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Hamailtonian PDEs

Many physical processes of interest not only evolve continuously in time but also
possess a continuous spatial structure and, hence, can be described by partial
differential equations (PDEs). Furthermore, many fundamental laws of physics,
such as quantum mechanics, electrodynamics, ideal contintum mechanics, can
be formulated within an extension of the Hamiltonian framework discussed so far
to PDEs. In this chapter we focus on two particular examples of such Hamiltonian
PDEs and discuss a number of numerical discretization techniques. The reader

should, however, keep in mind that the solution behavior of PDEs is much more

complex than that of ODEs and that the choice of an appropriate discretiza-
tion will depend very much on the anticipated type of solutions. The techniques
described in this chapter are very much restricted to smooth solutions such as
solitons [53, 201] and balanced geophysical flows [169]. This excludes, in par-
ticular, the consideration of shocks [201]. A general introduction to numerical
methods for PDEs can be found, for example, in [140].

12.1 Examples of Hamiltonian PDEs

12.1.1 The nonlinear wave equation

Let us consider the nonlinear wave equation
ure = 8x0 () = F'(u),  u=u(xt), (12.1)

where o and f are smooth functions. If o(uy) = u2/2, then the semi-linear wave
equation

Upp = Uxx — ff(u)

is obtained, Other choices for o{uy) lead to idealized one-dimensional models for
fluids and matenals.

Throughout this chapter, solutions v = u(x, t) of (12.1) are assumed to be
smooth in the independent variables x and t and we impose periodic boundary
conditions u(x,t) =u{x+ L, t), L > 0.
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We introduce the total energy £[u] by
Ltri
Efv] = f [Eu'f +o(ug) + f(u)] dx,
0
and observe that, using integration by parts,
d L ! /]
EE[U] = jo fueuee + o' (uxduxe + F {(v)ug] dx
L
=f Uy e — 0x0”' (ux) + /(1)) dx.
0

However, the term in brackets is equal to zero along solutions of (12.1) and,
hence, the total energy £[u] is conserved.

Let us denote the space of smooth and L-periodic functions in x by 5 =
C[0, L]. Our assumption then is that u(..t) € S for t > 0 or in short hand
u(t) € S. This smoothness assumption explicitly excludes the consideration of

shock-type solutions [201].
Furthermore, upon rewriting (12.1) as

Uy =V,
Vi = axo"(ux) - f'(u),

the wave equation can, formally, be viewed as a Hamiltonian system with phase
space (u,v)" € S x S, symplectic form,

L
a:f du A dv dx, (12.2)
0
and Hamiltonian functional
L
Hlu. v] = L [%v2 +a(uy) + f(u)] dx. (12.3)

The Hamiltonian equations of motion are derived in the following way. First,
the gradient V of classical mechanics is replaced by the “variational” gradient
67 = (64.6,)7. z = (u,v)T € 5xS. The variational derivative §,G of a functional
Glu] is defined by

Glu + edu] — G[u]

L
fo (68,6111 6u) dx = lim -

for any §u € S. Let us demonstrate this for §,H[u, v] which is equivalent to the
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variational derivative of G[u] = fUL lo(ue) + Flu)] dx

1

/{;L(éug[u]c‘)'u) dx = E|I_I'RJ = {-/OL lo{lu+ edulx) + f(u + edu)] dx —

/ 0w + F)] dx}

o' (e )(Bu)x + ' (u)du] dx

L
I
L
/(; [—8x0’ (uy)ou + f'(u)bu] dx

L
= /(; [0 (uy) + F'{u)] dudx.
Comparison of the left- and right-hand side yields
6uH[u, v] = 8uG[u] = —0x0"(ux) + F'(u).

One also obtains §,H[u, v] = v.
Next we rewrite the symplectic form (12.2) as

_ 1t
w=§fD (J51dz) A dzdx,
with the (local) structure matrix
0 +1
J2= [—1 0 ] '

and dz = (du, dv)T. Then the wave equation (12.1) becomes equivalent to an
abstract Hamiltonian system

zy = Jab; H[z]. (12.4)

We finally note that the nonappearance of the independent variable x in
the functions f and o implies another conserved functional for the PDE (12.1),
namely the total momentum

L
Mlu, v] :f Vi dx.
0
Indeed
d L
M —/0 (Vely + viiye) dx

=/DL(u,[6xcr’(ux)— F()] + vv,) dx
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=/UL[—-cr(ux)—f(u) + v2 /2], dx

= [-o(ua) — F(u) + v/2]
=0.

x=
x=0

12.1.2 Soliton solutions

Waves are one of the most important features of fluid dynamics [201]. Particular
types of waves are those that travel at a constant speed ¢ # 0 without chang-
ing their shape. These waves are called traveling waves or solitons [201, 53].
Mathematically a soliton is described by a (smooth) function ¢ such that

u(x, t) = p(x — ct).

Let us introduce the new variable £ = x — ct, then uy = ¢¢, 1y = —cg, etc.
Hence, assuming a solitary solution, the wave equation (12.1} gives rise to a
second-order ODE,

e = Oo'(0¢) — F(&). (12.5)

in the independent variable £, Equation (12.5) is a Euler-Lagrange equation
and to obtain the corresponding Hamiltonian formulation we introduce the new
dependent variable (conjugate momentum) ¥ = c?¢¢ ~ o'(¢¢). Let us assume
that this relation is invertible, i.e., there is a function g() such that ¢z =
g'(1). Hence one can rewrite the second-order ODE (12.5) as a conservative
system

Ye=—f($). de=9) (12.6)

with Hamiltonian

H=g(¥)+ ().

A solution ¢(£) gives rise to a soliton solution if the boundary conditions ¢¢(+o0) =
0 are satisfied, i.e., ¢(£) approaches some constant value as £ — £oo. In partic-
ular, let {@;. ¥;) denote the equilibrium solutions of (12.6), then any homoclinic
or heterochinic solution of (12.6) gives rise ta a (not necessarily stable) soliton
solution of the nonlinear wave equation (12.1).!

1A homoclinic solution is a solution connecting an equilibrium point (¢, ¥;) with itself, i.e.,
limgo1-c @(€) = @i, and a heteroclinic solution is a solution connecting two different equitibrium

points (@i, ¥i), (&, ¥;). i.e., lime oo @(€) = &, limens_ o B(E) = ;.
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Example 1 Let us consider the sine-Gordon equation
Upr = Uy, — sin{ur).

Traveling wave solutions u(x, t) = ¢(x — ct) must satisfy the second-order ODE
dee = tee — sin(@).

We introduce the momentum ¥ = c?@¢ —¢¢. For ¢ # =1, this relation can be inverted
and we obtain ¢¢ = ¥/(c? - 1) and g(¥) = 1¥?/(c? — 1). Hence the Hamiltonian
equations are

_ 1
P = —sin(@), e = 2 1¢
with Hamiltenian
1,’12
M= s@—g t -9

These are the equations of motion for a nonlinear pendulum with mass m = ¢2 —- 1.
Hence we first consider the condition |¢| > 1. The nonlinear pendulum possesses
heteraclinic solutions connecting pairs of hyperbolic equilibria {¢, ¥) = (kw,0) and
(. ) = ((k+2)w,0) for k = 1, £3, &5, . . .. These heteroclinic connections are easily
found as the contour lines of constant energy H = 0. Unfortunately, the associated
soliton solutions are all unstable [201, 53]. For |c| < 1, the equilibrium points (km, 0),
((k + 2)m,0), k = 0,£2, 14, ..., become hyperbolic and give rise to stable soliton
solutions. An explicit soliton solution with wave speed ¢. {¢| < 1, is given by

u(x t)—4arctanexp( X<t
e vi=¢z/)”

Because of their special shape, these solutions are called kink solitons. o

The two-dimensional rotating shallow-water equations

Large-scale"agghysical flows in the atmosphere and ocean are essentially incom-
pressible and ofte atified into nearly two-dimensional layers. Furthermore, the
effect of the earth’s rotaW¥eg significantly affects large-scale patterns away from
the equator, for example in atitude or near the poles. See ANDREWS [6]
and SAaLMON {169] for an introductio geophysical fluid dynamics and MorRrI-
SON [139] for further details on the HamiltOmga formalism of geophysical fiuid
dynamics.

A simple one-layer model system is provided by the TV
shallow-water equations (SWEs) [139, 169]

dimensional rotating

Ue + tite + vy = +Fv — cShy,
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Ve + vy + vy, = —Fu — c2hy,
he + ubye + vhy = —h(uc + v ),

u,v)T € R? is the horizontal velocity
gravitational Qenstant, H is the mean layer depth
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(12.8)
(12.9)

field, co = gH, g is the
of the fluid, A > 0 is the

normalized layeRdepth with mean value scaled equal to one, and f > 0 is twice
the angular velociyof the rotating fluid. For simplicity, we wilt consider the SWEs
over a double perio®g domain of size L x L and keep f = f3 constant.

Du

D= fodots — 3 Viem,
Dh

D_t = -th - i,

where x = (x.y)7, h=1+mn, and

0 +1
e [53)
Given a function w(x, t), the material time deri

of w along motion of a fluid particle X(t) = (X(¢t).
sively advected under the velocity field u, i.e.

DX

D "

As an example consider absolute vorticity
C=Vx_uy+ﬁ]=vx X u+fy.
Using
bu_oD 8D,
Dt axDt ayDt
= (vt + uvx + vy )x = (U + vuy + vy ),
= (v — ty)e + (v — ty)x + v(ve — 1)y

= (- B

Ve X

(12.10)

(12.11)

ive charactenzes the change
)7 € R?, which is pas-

+ (v — )y + vy)

it is easy to conclude from (12.10) that absolute vorticity satisfies the continuity

equation

be = —(Viy i1
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defining the layer-depth A at time t and Eulerian position x. Here § denotes the
Dirac delta function. Using dX dY = |X,|dadb and {12.18), we can pull this
iMgegral back to label space, arriving at the relation

h(x, t) = f ho(a)8(x — X(a, t)) dadb, (12.19)

du
ot (12.20)

ax
ar =Y (12.21)

where h is defined by {1248) or {(12.19). Note that the material time derivative
was replaced by the partial Wgrivative with respect to time. This reflects the fact
that the material time derivialive becomes a partial derivative in a Lagrangian
formulation of fluid dynamics, Wgere time t and labels a € A are now the inde-
pendent variables. Next we introd®ge the canonical momenta

p == hO uv
and the equations (12.20)—(12.21) becoWge canonical with Hamiltonian

_1fpp
R=5]"h

and symplectic two-form

C2
dadb + ;]hoh

o ;:f(h';f“dxwgdx+dp/\dx) d

12.1.4 Noncanonical Hamiltonian wave equatio

We have already encountered in Chapter 8 the rigid body a
noncanonical Hamiltonian system of the general form

%z = M(z)V H(z).

For PDEs, this generalizes to
Uy = J(u)d,H.

Here J(u) is a linear (in general, differential) operator, called the Poisson opé
ator, that has to satisfy certain properties similar to those for the matrix J(z
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A well-known example is provided by the Korteweg—de Vries (KdV) equation

Up -+ Ul + thexx = 0. (12.23)

and the skew-symmetry of {F, G} folloWg upon integration by parts. Similar to

the rigid body, the Poisson operator 7 is Myt invertible and this gives rise to the
Casimir function

Cle) = /udx.

Indeed, it is easy to verify that

d
—C={CH}=0.

along solutions of the KdV equation.

tween two-dimensional incompressible fluid dynamics and an infinite-dimen
version of rigid body dynamics. See the review article by Morrison [139]
further details.

12.2 Symplectic discretizations

The basic idea of symplectic discretization methods for Hamiltonian PDEs con-
sists of two steps:

(i) A spatial truncation that reduces the PDE to a system of Hamiltonian ODEs.
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(i) Timestepping of the finite-dimensional Hamiltonian ODE using an appropri-
ate symplectic method.

The crucial new step is the construction of a finite-dimensional ODE model that
retains the Hamiltonian character of the given PDE. The most popular approach
is based on the introduction of a spatial grid over which the equations of motion
can be truncated. Another approach, particularly well suited for Lagrangian fluid
dynamics, reduces the PDE to a set of moving particles interacting through an
appropriate potential energy function. Both approaches will be described below.

Finally we give a note of warning. Certain noncanonical Hamiltonian PDEs
resist a spatial truncation to a finite-dimensional Hamiltonian system. This is
true in particular for the Eulerian formulation of inviscid fluid dynamics. The
only significant exception is provided by incompressible fluids on a plane with
double periodic boundary conditions. See ZeiTLiN [208] and McLACHLAN [128] for
a numerical implementation.

12.2.1 Grid-based methods

Consider the nonlinear wave equation (12.1). The first step towards a numerical
algorithm is to introduce N grid points x; = jAx, Ax = L/N, i =1,....N.
and to approximate functions v € S by vectors v = (1, ta, ..., uy)T € RV
with u(x;) = u;. We define u,.n = 1, reflecting the fact that periodic boundary
conditions are imposed. The new state space is z = {7} € RN, z, = (u,, v)T e
R2. The symplectic form (12.2) is naturally truncated to
N 1N
- — ~1
@y = ;du, Adv;bx = 3 ;dz,f\Jz dz; Ax,

and the Hamiltonian functicnal (12.3) is approximated by the sum

H= i [El-'v-2 40 (__u; — u';_l) + f(u-)] Ax
=27 Ax

Hence, we obtain the system of Hamiltonian ODEs

d 1 .
EEZ; = EJ;;V;,H(Z). i=1,....N
Note that
. 1 . 1
AI)E'T)DEVHH - 6UH[U. V] and ALI{I'_H}D EVVH — GVH[U. V].

and the spatially discrete equations formally converge to the PDE limit (12.4).
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For the specific Hamiltonian, as given above, the finite-dimensional truncation
becomes

d o(win) —o'(w)

O ) — Flu), (12.24)
dtv' Ax ( r)
d
E'Eui = V'-' (12.25)

i=1,..., N, with
u, — U =ty

Wip1 = __H-.lﬁx -, W, = —Ax' .

The equations of motion can be integrated in time using any canonical method
such as a symplectic Euler method, for example,

U’(Wf’l-l) o.l(w'n)

VY T pn)|.
u™ =yl + A,

where
wh = up = oy Wi = Ul _“:"

Ax Ax

See McLacHLAN [129] for further details on this classical approach to the numer-
ical solution of Hamiltonian PDEs. _

This might appear to be the end of the story. However, the interpretation
of the wave equation (12.1) as an infinite-dimensional Hamiltonian system has
masked some of the interesting local features of the PDE. For example, let
us have another look at the Hamiltonian functional H[u, v]. We can write this
functional as

Hlu. v]=/0L E(u, v) dx, E(u,v)= %v2+a(ux)+f(u).

The function E is called the energy density. Let us compute the time derivative
of E

E: = vve + 0 (U )uxe + F(1)ue
= v 0o (ux) — F ()] + o' (v + F(u)v
= [ve'(ue)]x-

We have obtained what 1s called an energy conservation law

E:+F, =0, (12.26)
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where F = —vo'(uy) is called the energy flux. Under periodic boundary con-
ditions, the conservatlon Iaw (12.26) immediately implies conservation of total
energy since fu Fx = [FIXZ5 = 0. But the energy conservation law (12.26) is
valid independently of any boundary conditions. Hence it is more fundamental
than conservation of total energy.

Let us repeat the above calculation for the spatially truncated system (12.24)-
(12.25). We define the discrete energy density

1
Ei = 5v7 + o(w) + f(u;),
and find:

5 uj -
——Ei = vi¥; + 0'(w;) 2+ F(u);

U

Ax

of'(wipq) — o'(w,

=y ( +1;x (J+ (’)

vio' (Wir1) — o' (wi)vicy
Ax

_Fp—Fiap
Ax '

v,_

where

!
Fivre = —vio'(Wis1),  Fioap = —vi10'(w).
Hence we have obtained a semi-discrete energy conservation law

d e Fivipp— Fioaye
dt Ax

and £,/ are approximations to the energy flux F(u(x)) at x = iAx £+ Ax/2.
Again this local energy conservation law is more fundamental than conservation
of total energy H. Applying a symplectic integration method in time, we can now
monitor the residual,

=0,

A+1/2 n+1/2
rrt12 _ ET - E7 " Fivz — R
S

At Ax '
of a fully discretized local energy conservation law with

(12.27)

1
EP = S( +a(wf) + F(u]).
and

n1/2 1 :
FIil = —5 [vPa'(wlhy) + v e (wmh)] |
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etc. Similar to the non-conservation of total energy under symplectic time inte-
gration, we cannot, in general, expect the residual R™1/2 ¢4 be zero. But a formal
backward error analysis has been developed by MOORE AND ReicH [137, 138] to
explain the remarkable global and local energy conservation of symplectic PDE
discretizations observed, for example, in [162].

One can also derive methods that exactly conserve energy. See, for example,
[96] and [115]. Such methods will, in general, not be symplectic.

Example 2 Let us discuss the sine-Gordon equation
Upe = tyx — sin{ur).

The energy density is
E= %((ut)2 + (14)?) + (1 = cos u),

and the energy flux is
F = —uu,.

The spatial discretization (12.24)-(12.25) followed by a symplectic Euler discretiza-
tion in time yields

n A+l _ g0 A+l 0l

1
vl — _ wh, —w _ sin(u™) u; Lt Y [I——3
At Ax s At r Ax "
(12.28)

The semi-discretized energy conservation law i1s

d
dt

—ViWip1 + Vi W

[(v +w2)+(1—-cos(u,))] [ i ]=o. (12.29)

Note that, upon eliminating w” and ¥", the method (12.28) is equivalent to the
classical centered leap-frog scheme

utl —2 ot —2uf +ul
u' + _uly — sin{uf').
At? Ax? ]

We will come back to the local aspects of Hamiltonian PDEs and their numeri-
cal counterparts in Section 12.3. Numerical results will be presented in Section

12.3.4.
Let us briefly discuss a spahial discretization for the KdV equation (12.23).

The Hamiltonian is easily discretized to

H= ZN: [ — (%)2] Ax.

—
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The spatial truncation of the Poisson operator .7 is potentially more challenging.
However, for KdV, any skew symmetric approximation of the differential operator
J = O« is sufficient and will lead to a finite-dimensional Hamiltonian system.
This Hamiltonian ODE can be integrated in time by a symplectic integrator.
Symplectic methods based on splitting the Hamiltonian into integrable problems
are available, See, for example, QUISPEL AND MCLACHLAN [132] and ASCHER AND
McLACHLAN [9].

%2.2 Particle-based methods

=N} 2y = (ibx,jAy) to the advected particle positions {X,(t)}.
g determines the layer-depth approximation in a standard mesh-

for an Eulerian formula®gn of fluid dynamics. See Durran [55] for an overview
of such methods. Howevéy none of these methods respects the Hamiltonian
nature of the inviscid equatiohg of motion. This is due to the already mentioned
difficulty of finding a spatial trun®@gtion of the underlying noncanenical formulation
of Eulerian fluid dynamics.

All these problems disappear |
Lagrangian instead of the reduced Eule
The resulting so-called mesh-free methoa
layer-depth h via the identity (12.19). The md
Lagrangian fluid dynamics simulations is the gothed Particle Hydrodynamics
{SPH) method of Lucy [120] and GINGOLD AND AGHAN [71]. Many different
vanants of the basic SPH method have been propos® over the years. The first
application of SPH to the shallow-water equations is d%g to SALMON [168]. We
follow here the general framework of FRANK AND REICH 63

Any spatial discretization will lead to a finite spatial resoli8gn. For grid-based
methods that resclution is directly related to the mesh-size AxNgor a mesh-free
method, we have to instead introduce a smoothing or filter leng®ya > 0. Any
fluid motion below that length scale will not be properly resolved. He
replace the SWEs (12.20)—(12.21) by the 'regularized/smoothed’ for

e give up the grid and work with the
0 formulation of inviscid fluid dynamics.
e based on an approximation of the
well-known mesh-free method for

5]
574 = fodott — 3Vx (A * h),

aX=u
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e the convolution A * h is defined in terms of a smooth kernel function

X(a, t))da db) dx dy

ho(3) (fw(x,x) 8(% — X(a. t)) d% dy) dadb

a)yP(x, X(a, t))dadb.

A kernel often used in the SPH

1
N = —lix—
V(xyia)=_g5e

hod is the Gaussian

where a > 0 is the smoothing length sca

To set up the numerical method, we |
equally spaced grid points {a;;} and mesh-
enumerated by integers k =1, ..., N, which se
5 : (i.J} = k is one-to-one. The particle positions§t time t are denoted by Xi(t)
and initially X(0) = a,;. Each particle has a "mass\m, = h,{a,;) and a velocity
ui(t) € R2. The layer depth at X,(t) is then approxMgated by

() = 32 mw(Xi(£). Xi(t)) Aab.
!

raduce a mesh in label space with
e Aa = Ab. The grid points are
e as discrete labels, 50 the map

Similarly, any integral of the form
/= f ho(a) w(X(a)) da db
is approximated by

S Z myewy AalAb, wi, = w(Xg).
P

From here an we can follow exactly the same approach as outlined for
symplectic discretization of grid-based methods. The Hamiltonian functional
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dz" d n+1
"= S ldz" A dz" + AtJ“lJszH—zz— Adz"

At
=Jldz"AdZz" + ?szdz"'“ Adz",

dz" + dz"t!
2

Hy,dz"L A dz",

Iz A dz™ = 72 A AR + At IH,, Adz"!
= J"ldz"* A d2"

Here we have made use of Property 3 of the Wdge product as stated in Section
3.6 and, in particular, used that

dz" A Adz" = dz™! A Adz"! =0,
for any symmetric matrix A € R?9%2¢_ Summing up, we aifye at the equality

gz p gzt = golygz" A dz",

shown: the implicit midpoint method preserves any constant symplectic struct

4.2 Construction of symplectic methods by
Hamiltonian splitting

In the above discussion, we have shown that several integrators are symplectic
when applied to integrate Hamiltonian systems. In this section, we show that
there is a simple technique that can often be used to produce good symplectic
methods.

Suppose that we can split the Hamiitonian H into the sum of k > 2
Hamiltonians H;, i =1,... k., i.e.

k
H(z) = H{2).
fml
with each Hamiltormian vector field

d z = JV;Hi{z)

ra
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explicitly solvable. A symplectic integrator is then derived as an appropriate com-
position of the corresponding flow maps. Since each flow map is obviously sym-
plectic and any composition of symplectic maps yields a symplectic map, the
resulting numerical method is symplectic. See problem 2 in the Exercises.

As a simple example, consider a nonlinear oscillator H(q. p) = %pz +(q).
The energy can be decomposed into kinetic and potential terms

1
H=H1+H;, Hi= 592. Ha = ¢(q).

Now each term is exactly integrable. The equations of motion for H; are
a=p,
p=0,

which has the flow map

[q] [q+ tp
¢t,Hl ( p ) = p ] 5

Similarty, Ha has flow map

D, 1. 4] _ . .

tH ( P ) |p— ty'(9)

Each of these maps is symplectic (each is the flow map of a Hamiltonian system),
hence the map defined by

War = Par 1, 9 PacH,

is also symplectic.
We still need to show that such a composition method approximates the flow
map with at least first order.

FIRST-ORDER SPLITTING

If H= Hy+ Ha+ ...+ Hy is any splitting into twice differentiable
terms, then the composition method

War = ParH, ©ParH, © - 0 Parpy,

is (at least) a first-order symplectic integrator.


Symplectic time integration with splitting methods
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Let us walk through a proof for the case k = 2. In Chapter 5 a more detailed
result will be given. We wish to compare the flow map @a,  with Wa,. It is
enough to compare the images of an arbitrary point z° under the two maps.
Using a Taylor series expansion in powers of At and the definition of the flow
map, it is easy to show that

s (2% = 2% + Atz(0) + O(AL?)
=2 + AtJVH(Z") + O(AF3).

We can argue in a similar way that
Opr 1 (2°) = 20 + AtJVH,(2%) + O(AL?),
i =1,2. And then, performing similar expansions in At, we arrive at

War(2”) = darn, (‘f’nc.Hz(Zo))
= Pae 1, (2°) + ALIVH (B0 1,(2°)) + O(AF)

=20+ AtIVH>(2%) + AtIVHL(Z2%) + O(AL?)
=20+ AtJVH(Z®) + O(Ar?)
= ®acn(2) + O(AF).

This estimate of the local error, together with the evident smoothness of the
flow map, proves that the composition method is at least first order.

The only apparent drawback of this approach i1s that it requires the splitting of
the given Hamiftonian into explicitly solvable subproblems. This may not always
be possible or desirable. In many cases, the system may admit a partitioning, but
without the individual terms being exactly integrable. In these cases, one may be
able to construct effective schemes by substituting another symplectic integrator
for the exact flow map at some stage. The sphtting technique may in this way
simplify the development of an effective method by breaking down a complicated
problem into a series of lesser challenges.

A curious special case arises when H; and H- are first integrals of each other,
i.e., {H1. Ha}. Then the two flow maps commute {see problem 4 in the Exercises)
and the composition method is exact

Par Hi+H: = ParHy ©Par i = Par Hy © Pach..

4.2.1 Separable Hamiltonian systems

The splitting described earlier for the special case of the oscillator is applicable
to any separable Hamiltonian of the form

Hla.») = T{p) + Vi),
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As we have seen in earlier chapters, such systems are ubiquitous in chemical and
physical modeling, being the standard form for N-body simulations with a flat
(i.e. Eudlidean) kinetic energy metric.

As before, the form of the energy function suggests a natural splitting into
kinetic energy

Hi(p) =T(p),
and potential energy
Hx(q) := V(q).
The differential equations corresponding to H» can be written
d
9= 0,
d
att = —VqV{q).

These equations are completely integrable, since g is constant along solutions
and p therefore varies linearly with time. The flow map is

: -
) p) =
T.V(q p) _P _ TVqV(C])_
Similarly, we can derive the flow map for the kinetic term (H;)
(g +7V,T(p)]
@ r(a.p)= |7 Tp" (r)

Now consider the composition of these two maps for 7 = At,

War i= Par7 o Pary-
Applying this map to a point of phase space (g", p”), we first compute a point
(4. B)

q=q",

p=p"— AtVV(q").
Next, apply @4; 7 to this point, i.e.

g™ = § + AtV,T(B).

pn+1 = p.
These equations can be simphfied by the elimination of the intermediate values,
to yield

qn+1 — qn + AthT(pn'l),

P = p" — AtV V(g™
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This is evidently the Euler-B method introduced in the previous section specialized
to the case of a mechanical Hamiltonian. While the Euler-B method is normally
implicit, it becomes explicit when applied to this special class of Hamiltonians
due to the separation of variable dependencies.

By reversing the order in which the two maps are applied, we obtain another
composition method, @ v o @, 7, which reduces after a similar calculation to
the Euler-A method.

An interesting point that should be mentioned is that not afl symplectic maps
are given by a splitting. For the general Hamiltonian, it is clear that the Euler-A
and Euler-B methods are not obtained from any splitting. It is only for the special
case of a separable Hamiltonian that these methods can be viewed in this special
way.

4.2.2 A second-order splitting method

Higher-crder splitting methods are also easily constructed. We will take up this
theme in more detail in Chapter 6. For now, as an illustration, consider again the
mechanical Hamiltonian and the splitting

H=H; + Ha + H3,
with
1 1
Hy = EV(Q)- H2 = T(p), Hz = EV(Q)'
The associated composition method is equivalent to
Var = Patpav e Part @ Pacov-

After simplification, it becomes clear that this integrator is nothing other than
the second-order Stormer—Verlet method (2.16)-(2.18) of Chapter 2 written in
terms of the canonical coordinates

PP = g~ SALY,V (g, (4.14)
gt = g" + AtV T(p"tY?), (4.15)

1
piHl — pnt1/2 2AthV(q"+1). (4.16)

Since it is a splitting method we may infer: the Stormer—Verlet method (4.14)-
(4.16) is canonically symplectic.

Just as the imphcit midpoint method turned out to be the composition of
implicit and explicit Euler steps, notice that the Stormer—Verlet method can be
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gxpressed as a compaosition of half-steps using the Euler-A and Euler-B methods,
i.e.

PpriveParro Pactv = Pativ @ Parsr o @it © Pae v
=®Pipty © PraeT PiaeT ©Pinsy-

3 Time-reversal symmetry and reversible
discretizations

consequences of this
Hamiltonian system

The key fact is this: if (g(t), p(t)) is a ¥
~p(-t))is.
To prove this abserve that

Here we used the general fact that if h(x.y) is an even func
is also even in y, and hy is odd in y, meaning that he{x, —y)
hy(x, —y) = =hy(x, y).
The invariance of the Hamiltonian with respect to p — —p evide
that for every solution of the Hamiltonian system, there is another solutio

momentum.
Another way of saying this is that if we evolve the solution T units in time






