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These notes—prepared for guest lectures in the Mastermath course “Numerical methods for
time dependent partial differential equations”—address numerical methods for Hamiltonian
partial differential equations. Hamiltonian PDEs extend the concept of Hamiltonian ODEs
to the infinite dimensional setting, and as such the numerical treatment is largely motivated
by results obtained for ODEs. In a sense, our approach is to discretize a Hamiltonian PDE
in space so as to obtain a Hamiltonian ODE, for which excellent numerical methods exist.
Hamiltonian systems are characterized by their symmetries and conservation laws, and our
goal is to preserve such structures when moving from the continuous system to its finite
computational analog.

1. A motivating example: point vortices. To motivate these notes, let us consider a very
simple model of a fluid such as water or air. If the fluid is incompressible, meaning its density
is everywhere uniform, and if it is also inviscid, meaning its internal friction is negligible,
then its motion is described by a system of partial differential equations known as the Euler
equations, which we will not present here. Instead, we note that when restricted to the plane
the Euler equations admit a finite dimensional weak solution comprised of a linear combination
of Dirac δ-distributions for the vorticity, a quantity that (roughly speaking) measures the local
degree of rotation in the flow. An individual Dirac distribution represents an isolated point
vortex (e.g. a tornado, hurricane, or something similar).1 The position at time t of the ith
vortex is given by (Xi(t), Yi(t)). In the specific case of two point vortices of equal strength
and rotational orientation, the equations of motion are:

Ẋ1 = (Y2 − Y1)[(X2 −X1)2 + (Y2 − Y1)2]−1,(1)

Ẏ1 = (X1 −X2)[(X2 −X1)2 + (Y2 − Y1)2]−1,(2)

Ẋ2 = (Y1 − Y2)[(X2 −X1)2 + (Y2 − Y1)2]−1,(3)

Ẏ2 = (X2 −X1)[(X2 −X1)2 + (Y2 − Y1)2]−1.(4)

The above system of differential equations can be solved exactly. However, if we increase the
number of point vortices to more than four or five, the motion becomes highly complex and no
explicit solutions can be found for generic initial conditions. Instead, the only way to generate
solutions is through numerical simulations.

Figure 1 illustrates numerically computed motions of the two vortices as computed using three
methods: the forward (or explicit) Euler method, the backward (or implicit) Euler method,

1In fact, it can be shown that with proper scaling, in the limit as the number of point vortices approaches
infinity, the point vortex model weakly approximates smooth solutions of the Euler equations.
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and the implicit midpoint rule2:

(5)
yn+1 − yn

∆t
= f

(
yn+1 + yn

2

)
.

The same time step was used for all three methods, namely ∆t = 0.02. With all three methods
we observe that the point vortices revolve around each another. This is not surprising: each
tornado moves in the wind field induced by the other tornado, which is circular and of equal
magnitude. However there are notable differences: in the motion computed with the explicit
Euler method the point vortices gradually spiral outward; in the motion computed with the
implicit Euler method they repeatedly spiral inward until being ejected; and in the motion
computed with the implicit midpoint rule the point vortices revolve without spiraling.

-1 0 1
-1

-0.5

0

0.5

1

-1 0 1
-1

-0.5

0

0.5

1

-1 0 1
-1

-0.5

0

0.5

1

Figure 1. Motion of a pair of point vortices, computed with three numerical methods: forward Euler
(left), backward Euler (middle), implicit midpoint rule (right). In all cases, both point vortices have positive
orientation and unit circulation, initial positions were (± 1

2
, 0), step size ∆t = 0.02, integration time 625 time

steps.

Which motion is correct? Denote the separation distance between the two point vortices
by

(6) r =
[
(X1 −X2)2 + (Y1 − Y2)2

]1/2
.

The time rate of change of r(t) along a solution to (1) and (4) is given by

dr

dt
=

∂r

∂X1
Ẋ1 +

∂r

∂Y1
Ẏ1 +

∂r

∂X2
Ẋ2 +

∂r

∂Y2
Ẏ2 = 0,

which can be found by substitution. The behavior of the implicit midpoint rule is correct,
the spiraling behavior of the Euler methods is not. In Figure 2 on the left we see how the
separation distance r(t) changes with time for the three methods. With forward Euler the
separation distance grows, with backward Euler it decays until the point vortices “collide”
and are dispersed (at which point it decays again), and with implicit midpoint, the separa-
tion distance appears constant. On the right of Figure 2 we see that this behavior of the
implicit midpoint rule is not just a good approximation: the separation distance is actually
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Figure 2. Change in separation r(t) between point vortices as function of time, at left computed with three
methods: forward Euler (blue), backward Euler (red), implicit midpoint (yellow). At right, the error |r(t)− 1|
as computed with the implicit midpoint rule.

constant to the level of machine precision. We remark that the spiraling behavior of the Euler
methods persists if we decrease the stepsize. The rate of spiraling decreases (the methods are
convergent, so spiraling must go to zero as ∆t → 0), but it is always present for finite step
size.

We might be tempted to understand the behavior of these numerical methods via linear
stability theory. However we would immediately encounter a problem: linear stability is
defined with respect to linearization about an equilibrium, and the system (1)–(4) possesses
no equilibria!

On the other hand, the fact that the separation distance r is preserved along any solution
implies that all solutions are bounded up to a possible translation of the origin. Furthermore,
it may be easily checked that the “center of vorticity”, defined by

(7) M =

(
X1 +X2

2
,
Y1 + Y2

2

)
,

also satisfies dM/dt = 0 along solutions of (1)–(4). Consequently, we conclude that the two
point vortices revolve around a common, fixed center of vorticity, and hence all solutions are
bounded.

Summarizing, the adherence to the two conservation laws

dr

dt
= 0,

dM

dt
= 0,

confines the solutions of (1)–(4) to a compact space, ensuring the boundedness of solutions
for all t. The discrete approximate solution obtained with the implicit midpoint rule retains

2Here applied to the generic ODE y′ = f(y).
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this feature of the continuous solution, whereas neither the solutions computed with forward
nor backward Euler does so. In this example we see that conservation is essential to obtain
the correct solution behavior on long time intervals. In the first part of these lecture notes we
will review the ideas of conservation laws and symmetries in the ODE context and discuss in
what ways these can be retained under numerical discretization.

2. Conservation laws. An elementary yet crucial observation from linear algebra is the
following. Let B ∈ Rd×d, BT = −B, be a real skew-symmetric matrix, then

(8) xTBx = 0, ∀x ∈ Rd.

To check this, define α = xTBx. Note that α is a real scalar quantity, hence equal to its
transpose:

α = αT = (xTBx)T = xTBTx = −(xTBx) = −α.

Since α = −α, α must be zero. Skew-symmetry is fundamental to conservation laws.

Consider the autonomous ordinary differential equation

(9)
dy

dt
= f(y), y(t) ∈ Λ ⊂ Rd, f : Λ→ Rd.

A function I : Λ → Rd that is constant along any solution y(t) of (9), i.e. I(y(t)) = I(y(0)),
t > 0, is called a first integral. If I(y) is differentiable, then it follows that for y(t) a solution
to (9),

(10) 0 =
d

dt
I(y(t)) = ∇I(y(t)) · dy

dt
= ∇I(y) · f(y),

where ∇I(y) denotes the gradient of I(y). That is, if I is a first integral, then its gradient is
everywhere normal to the vector field f(y). The converse is also true. In physical systems,
first integrals represent conservation laws, i.e. quantities that are preserved under the motion
of the system.

An obvious class of systems possessing a first integral, are “skew-gradient” systems. Suppose
B(y) : Λ→ Rd×d is a skew-symmetric matrix function, B(y)T = −B(y), for all y ∈ Λ. Then
a differential equation of the form

(11)
dy

dt
= B(y)∇I(y)

is a skew-gradient system. The function I(y) is a first integral of (11), since along a solu-
tion,

d

dt
I(y(t)) = ∇I(y(t)) ·B(y(t))∇I(y(t)) = 0,

via the property (8).
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Conversely, if I(y) is any first integral of an ODE (9), then away from equilibria y∗ of the
form ∇I(y∗) = 0, the ODE can be written in the form (11). To see this, think of f(y) and
∇I(y) as column vectors and define

B(y) =
f(y)∇I(y)T −∇I(y)f(y)T

∇I(y)T∇I(y)
.

Since ∇I(y) · f(y) = 0, we find

dy

dt
= B(y)∇I(y) =

1

‖∇I(y)‖2
[
f(y)∇I(y)T∇I(y)−∇I(y)f(y)T∇I(y)

]
= f(y).

We conclude that any system possessing a first integral can be cast in skew-gradient form
(11), at least away from equilibria. Skew-gradient structure is in this sense generic (though
not necessarily obvious) for systems with conservation laws.

3. Conservation by Runge-Kutta methods. An s-stage Runge-Kutta method for com-
puting an update yn 7→ yn+1 of the ODE (9) is defined by a set of coefficients (e.g. quadrature
weights) bi, i = 1, . . . , s for the update as well as coefficients aij , i, j = 1, . . . , s for the s
internal stages. The class of Runge-Kutta methods take the form

Fi = f

yn + ∆t
s∑
j=1

aijFj

 , i = 1, . . . , s,(12)

yn+1 = yn + ∆t

s∑
i=1

biFi.(13)

These methods represent a rather broad class of one step methods. For instance, the forward
Euler method is defined by parameter values s = 1, a11 = 0, b1 = 1, backward Euler by
parameter values s = 1, a11 = 1, b1 = 1, and the implicit midpoint rule by parameter values
s = 1, a11 = 1/2, b = 1 (Check this!).

A linear first integral assumes the form I1(y) = κT y+α, where κ ∈ Rd is a constant vector and
α is a scalar. We encountered two linear first integrals in the example of the point vortices,
namely the two components of the center of vorticity vector M defined by (7). It turns out
that all linear numerical methods conserve arbitrary linear first integrals. We demonstrate
this result for the class of Runge-Kutta methods. Note that the condition (10) becomes
κT f(y) = 0, for all y ∈ Λ. Multiplying all terms in an s-stage Runge-Kutta method from the
left with κT yields:

κTFi = κT f(yn + ∆t
s∑
j=1

aijFj) = 0, i = 1, . . . , s,

κT yn+1 = κT yn + ∆t

s∑
i=1

biκ
TFi = κT yn.
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It follows that I1(yn+1) = κT yn+1 +α = κT yn+α = I1(yn). Hence, I1(yn) = I1(y0) is constant
for all n > 0, and we see that Runge-Kutta methods conserve arbitrary linear first integrals
(whether or not we are aware of the existence of these).

A quadratic first integral assumes the form I2(y) = yTMy + κT y + α, where M ∈ Rd×d may,
without loss of generality, be assumed to be a symmetric matrix3. The separation distance
(6) in the example of the point vortices is a quadratic first integral. One may ask under
what, if any, conditions arbitrary first integrals are conserved within the class of Runge-Kutta
methods. In this case, the condition (10) implies 2yTMf(y) + κT f(y) = 0. For the forward
Euler method, we check

I2(yn+1) = yTn+1Myn+1 + κT yn+1 + α

= [yn + ∆tf(yn)]T M [yn + ∆tf(yn)] + κT [yn + ∆tf(yn)] + α

= yTnMyn + κT yn + ∆t
[
yTnMf(yn) + f(yn)TMyn + κT f(yn)

]
+ ∆t2f(yn)TMf(yn)

= I2(yn) + ∆t2f(yn)TMf(yn).

For general f , the forward Euler method does not conserve arbitrary quadratic first integrals.
How about the implicit midpoint rule (5)? For simplicity, we consider the simpler case I2(y) =
yTMy, which implies yTMf(y) = 0, for all y ∈ Λ. Define ŷ = (yn+1 + yn)/2. Multiplying
both sides of (5) from the left by ŷTM yields(

yn+1 + yn
2

)T
M

(
yn+1 − yn

∆t

)
= ŷTMf(ŷ) = 0.

Simplifying the first term of this relation yields I2(yn+1)− I2(yn) = 0.

More generally it is straightforward to check that any Runge-Kutta method whose coefficients
satisfy the condition:

(14) bibj − biaij − bjaji = 0, i, j = 1, . . . , s

conserves arbitrary quadratic first integrals. (Check this! Note that (10) implies the relation
κT f(y) = −2yTMf(y), ∀y ∈ Λ. Check that implicit midpoint satisfies this criterion.) Higher
order generalizations of the implicit midpoint rule are called Gauss-Legendre collocation meth-
ods.

How about other polynomial first integrals? Unfortunately we are out of luck. There are no
Runge-Kutta methods that automatically preserve all cubic first integrals, for instance.

To preserve other first integrals, we must design tailored methods for specific conservation
laws. One approach to doing so utilizes the skew-gradient form (11) and a so-called “discrete
gradient”.

To construct a discrete gradient method, we need to define a matrix-valued function B̄ and a
vector-valued function ∇I, each taking two arguments. Let B̄(y, z) : Rd×Rd → Rd×d satisfy
the following conditions:

3The skew-symmetric part of M contributes nothing to the value of the integral due to (8).

6



• skew-symmetric structure: B̄(y, z)T = −B̄(y, z),

• symmetry with respect to its arguments: B̄(y, z) = B̄(z, y),

• consistency B̄(y, y) = B(y).

Similarly define a function ∇I(y, z) : Rd ×Rd → Rd that satisfies the condition

∇I(y, z)T (y − z) = I(y)− I(z),

as well as the consistency condition ∇I(y, y) = ∇I(y). Subsequently, the method

yn+1 = yn + τB̄(yn+1, yn)∇I(yn+1, yn)

satisfies I(yn+1) = I(yn), since

I(yn+1)− I(yn) = ∇I(yn+1, yn)T (yn+1 − yn)

= τ∇I(yn+1, yn)T B̄(yn+1, yn)∇I(yn+1, yn) = 0.

One possible discrete gradient is the midpoint discrete gradient. Denote yn+1/2 := (yn+1 +
yn)/2 and ∆y := yn+1 − yn. Then

∇I(yn+1, yn) := ∇I(yn+1/2) +
I(yn+1) + I(yn)−∇I(yn+1/2)T∆y

‖∆y‖2
∆y.

A possible realization of the matrix B̄ is given by

B̄(y, z) = B(
y + z

2
).

Discrete gradient methods are always implicit. With a little creativity, however, one can
construct splitting methods that are a composition of discrete gradient methods each of which
is implicit in only one variable (i.e. requiring only a scalar nonlinear solve for each flow).

4. Hamiltonian systems. A Hamiltonian system is a differential equation on R2d with an
associated distinguished function H(q, p) : Rd × Rd → R called the Hamiltonian, such that
the differential equation is written

(15)
dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

, i = 1, . . . , d.

The structure of these equations makes it clear that the Hamiltonian is conserved along a
solution (q(t), p(t)), since

(16)
d

dt
H(q(t), p(t)) =

d∑
i=1

∂H

∂qi

dqi
dt

+
∂H

∂pi

dpi
dt

=
d∑
i=1

∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi
= 0,
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where we have substituted the equations of motion (15). In most applications, H represents
the total energy, and (15) are the equations of motion of an energy conserving (or conservative)
system.

Above we have already tacitly introduced the vector notation q(t) = (q1(t), . . . , qd(t))
T , p(t) =

(p1(t), . . . , pd(t))
T . We also introduce the notation

∂H

∂q
=

(
∂H

∂q1
, . . . ,

∂H

∂qd

)T
,

∂H

∂p
=

(
∂H

∂p1
, . . . ,

∂H

∂pd

)T
,

and write (15) as
dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
.

Yet more generally, we may work with a vector y(t) ∈ Rd, H(y) : Rd → R, and write a generic
Hamiltonian system in skew-gradient form

(17)
dy

dt
= J−1∂H

∂y
,

where J = −JT is a constant, invertible, skew-symmetric matrix. In other words, the subclass
of skew-gradient systems with B(y) = J = const are the generalized Hamiltonian systems.
The particular case y(t) ∈ R2d and

J−1 =

[
0 I
−I 0

]
(where I is the identity matrix on Rd) corresponds to (15) and is referred to as a canonical
Hamiltonian system.

Example. The point vortex system (1)–(2) is a canonical Hamiltonian system with y =
(X1, X2, Y1, Y2)T and Hamiltonian function

H = log r

More generally, a point vortex system with N point vortices with vortex strengths Γi ∈ R,
i = 1, . . . , N , is given by

(18) ΓiẊi =
∂H

∂Yi
, ΓiẎi = − ∂H

∂Xi
, H =

N∑
i=1

N∑
j=i+1

ΓiΓj log
[
(Xi −Xj)

2 + (Yi − Yj)2
]
.

5. Symplectic maps. Given a Hamiltonian system the skew-symmetric matrix J can be
used to define a bilinear form

ω(a, b) = aTJb, ∀a, b ∈ Rd.
8



This form plays an important role in symplectic geometry, but we will not go into that here.
Instead, we call a matrix A a symplectic matrix if A defines a linear transformation that leaves
ω invariant in the sense that

ω(Aa,Ab) = ω(a, b), ∀a, b ∈ Rd.

Since this has to hold for all vectors a and b, we can choose the canonical vectors ei, i = 1, . . . , d
to prove that A is symplectic if and only if

ATJA = J.

Similarly, a map g(y) : Rd → Rd is said to be a symplectic transformation if its Jacobian
Dg(y) satisfies

Dg(y)TJDg(y) = J.

The fundamental property of a Hamiltonian system is that its flow is a symplectic trans-
formation. The flow Φt : Λ → Λ is a one-parameter map. For a given t ∈ R, it maps an
initial condition y0 to the solution of (17) at time t. For a given y0, the solution y(t) of (17)
satisfies

y(t) = Φt(y0), ∀t ∈ R.
We demonstrate that the Jacobian DΦt is a symplectic map, i.e. satisfies

(DΦt)
TJDΦt = J.

To see that this holds, define the matrix function M(t) = DΦt(y0), and note that this matrix
function satisfies the fundamental matrix equation:

Ṁ(t) = Df(Φt(y0))M(t)

In the case of a Hamiltonian system, we have

f(y) = J−1∇H(y) ⇒ Df(y) = J−1Hyy,

withHyy the (symmetric) Hessian matrix of second derivatives ∂2H
∂yi∂yj

. HenceM(t) solves

Ṁ = J−1HyyM.

Next, differentiate the matrix R = MTJM with respect to time:

Ṙ = ṀTJM +MTJṀ,

Ṙ = MTHyy(J
−1)TJM +MTJJ−1HyyM.

Noting that (J−1)T = −J−1, we find

Ṙ = −MTHyyM +MTHyyM = 0.

Furthermore, since M(0) = Φ′0(y) = I, we must have

R(0) = M(0)TJM(0) = J.

Since the matrix R is constant in time, we must have the desired identity MTJM = J .
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6. Symplectic integrators. Analogous to the flow Φt of a differential equation, we can
define the map associated to a numerical method Ψ∆t, i.e. yn+1 = Ψ∆t(yn). For example, the
forward Euler map associated with the ODE (9) is

Ψ∆t(y) = y + ∆tf(y).

A numerical method is called a symplectic method if its map is symplectic, i.e.

DΨ∆t(y)TJDΨ∆t(y) = J, ∀y ∈ Λ.

One can check that the implicit midpoint rule is a symplectic method. In fact, a Runge-Kutta
method is symplectic if and only if4 it satisfies the condition (14) for conserving arbitrary
quadratic first integrals5.

Besides Runge-Kutta methods (and the related important class of partitioned Runge-Kutta
methods), another (often more attractive) class of symplectic integrators can be derived by
splitting.

Splitting methods are based on two facts: (1) the exact flow of a Hamiltonian system is
symplectic, as shown in the previous section; and (2) the composition of symplectic maps is
again symplectic. To see the second of these, note that if f and g are both symplectic maps on
Λ with corresponding Jacobians Df and Dg, then the transformation f(g(y)) satisfies:

D[f(g(y))]TJD[f(g(y))] = [Df(g(y))Dg(y)]TJDf(g(y))Dg(y)

= Dg(y)TDf(g)TJDf(g(y))Dg(y)

= Dg(y)TJDg(y)

= J.

Now all we have to do to construct a symplectic splitting method is to split the Hamiltonian
H(y) into a number, say K, of terms

H(y) = H1(y) +H2(y) + · · ·+HK(y)

such that for each k the motion
ẏ = J−1∇Hk(y)

can be exactly solved analytically to obtain an elementary flow Φk
t . Then we construct a

numerical method by composing these flows over a time step ∆t:

Ψ∆t = ΦK
∆t ◦ · · · ◦ Φ1

∆t.

Each elementary flow is symplectic because it is the exact flow of a Hamiltonian system, and
the composite method is symplectic because it is a composition of symplectic flows. The

4Strictly speaking, the ‘only if’ also requires the method to be irreducible.
5This is all related to the quadratic form of the conservation law for R in the previous section, but that

discussion would take us too far astray here.
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above method is first order accurate. A second order variant can be obtained by composing
the above flow with its adjoint

Ψ∆t = Φ1
∆t/2 ◦ · · · ◦ ΦK−1

∆t/2 ◦ ΦK
∆t ◦ ΦK−1

∆t/2 ◦ · · · ◦ Φ1
∆t/2.

(Note that the innermost two flows are identical and commute, hence can be combined into
one.)

It might seem difficult to find a suitable splitting such that the elementary flows are all exactly
solvable. Experience shows however, that this is very often possible. Some particular cases of
solvable flows are linear flows, which can be integrated using the matrix exponential function
or the ‘separation of variables’ formula; and shear flows in which one variable remains constant
implying the derivative of another one remains constant. This last case occurs often in classical
mechanical systems, where the Hamiltonian is separable, i.e.

H(q, p) =
1

2
pT p+ V (q), q, p ∈ Rd, V : Rd → Rd.

In this case we can just take H1 = 1
2p
T p and H2 = V (q). The flow generated by H1 is

q̇ = p, ṗ = 0,

with exact solution q(t+∆t) = q(t)+p(t), p(t+∆t) = p(t). The flow generated by H2 is

q̇ = 0, ṗ = −∇V (q),

with exact solution q(t+ ∆t) = q(t), p(t+ ∆t) = p(t)−∆t∇V (q(t)).

The second order, self-adjoint composition of these two flows leads to the Störmer-Verlet
method

qn+1/2 = qn +
∆t

2
pn,

pn+1 = pn −∆t∇V (qn+1/2),

qn+1 = qn+1/2 +
∆t

2
pn+1

This method is second order, self-adjoint, symplectic, and explicit! When V is a complicated
nonlinear function, its gradient need only be evaluated once per time step. This method
is heavily used in molecular dynamics. It does not fit the class of standard Runge-Kutta
methods.

Example. One can construct a symplectic splitting method for the N -point vortex system
(18) by splitting the Hamiltonian into pair interactions

H =

N∑
i=1

N∑
j=i+1

Hij , Hij = ΓiΓj log
[
(Xi −Xj)

2 + (Yi − Yj)2
]
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The flow generated by one of the Hij is just a motion of two point vortices with all other
point vortices held fixed. The separation distance (6) is conserved under this motion (it is
a function of the Hamiltonian Hij). Additionally, another conservation law will hold. For
instance, suppose for i = 1 and j = 2 we have Γi = Γj = 1. Then the pair interaction
becomes (1)–(4). The Hamiltonian Hij is constant, implying that r is constant, and therefore
the denominator in (1)–(4) is constant. The equations reduce to

Ẋ1 =
Y2 − Y1

r(0)2
, Ẏ1 =

X1 −X2

r(0)2
, Ẋ2 =

Y1 − Y2

r(0)2
, Ẏ2 =

X2 −X1

r(0)2
.

This system is linear and can be solved either as a series of rotations, or by applying the matrix
exponential. The whole splitting method then involves looping over all pairs, calculating their
mutual distance, computing a matrix exponential, and updating that pair.

7. Backward error analysis. Symplectic numerical methods share the symplectic property
with the exact flow of Hamiltonian systems. So what? Does this have any benefits for
computation? Yes it does. Numerical experiments with symplectic methods indicate excellent
(though not exact) conservation of the Hamiltonian as well as other first integrals when the
system is integrable.

To understand this, we need to apply backward error analysis. To do so, we derive a modified
differential equation that better “approximates” the numerical flow Ψ∆t. We illustrate this
idea for the forward Euler method applied to the ODE (9). We look for a modified differential
equation as a correction to (9):

ẏ = f(y) + ∆tf1(y)

The exact solution to this modified ODE at time t+ ∆t is given by Taylor expansion

y(t+ ∆t) = y(t) + ∆tẏ +
∆t2

2
ÿ + · · ·

= y(t) + ∆tf(y(t)) + ∆t2
[
f1(y(t)) +

1

2
Df(y(t))f(y(t))

]
+O(∆t3)

Now the idea is to choose the vector field f1(y) such that the forward Euler map when applied
to (9),

yn+1 = yn + ∆tf(yn),

agrees with the above solution up to O(∆t3). Clearly this will be the case for f1(y) =
−1

2Df(y)f(y), leading to the modified equation

(19) ẏ = f(y)− ∆t

2
Df(y)f(y).

Note the following:

• Whereas forward Euler has an O(∆t2) error with respect to the solution of the original
ODE (9), forward Euler applied to (9) agrees with the solution of (19) to O(∆t3). In
this sense, the exact solution of (19) better describes the numerical solution of Euler
than does (9).
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• The modified equation (19) explicitly depends on the time step ∆t used to integrate
the original ODE with forward Euler. As ∆t→ 0, the modified equation converges to
the original ODE, as the numerical method converges to the solution.

• We have derived the lowest order correction of the modified equation. We could
continue, finding a new modified equation ẏ = f(y)+∆tf1(y)+∆t2f2(y), and carrying
out the Taylor expansion to O(∆t4) to find an even more accurate modified equation.
In fact, we continue this as much as we please, expressing the modified equation as an
asymptotic expansion. For any fixed ∆t, such an expansion fails to converge but may
be optimally truncated.

Now comes the crux. If we carry out a backward error analysis as above for a symplec-
tic method of order p, we find the remarkable result that the modified equation takes the
form

ẏ = J−1∇H̃(y), H̃(y) = H(y) + ∆tpHp(y) + ∆tp+1Hp+1(y) + · · ·

In other words. The modified equation is again a Hamiltonian system with a perturbed
Hamiltonian function. The modified Hamiltonian H̃ is a first integral of the modified equation,
and hence it is conserved by the method, i.e. H̃(yn+1) = H̃(yn). However, since

H(y) = H̃(y) +O(∆tp),

we observe that the original Hamiltonian is approximately conserved up to fluctuations with
an amplitude of O(∆tp).

Example. As an example consider the nonlinear pendulum. Let q be the angle, measured
clockwise from the vertical at the lowest point, and let p = q̇. The equations of motion
are

q̇ = p

ṗ = − sin q.

And the Hamiltonian is

(20) H =
p2

2
− cos q.

We will compare three methods for this problem, forward Euler, backward Euler, and the
following method, which we refer to as symplectic Euler

qn+1 = qn + ∆tpn

pn+1 = pn −∆t sin qn+1.

Note that this method can be computed explicitly even though q is evaluated at time level
n+ 1 on the right. The method is first order accurate.

The solutions obtained with all three methods are plotted in Figure Figure 3. The black curves
are level curves of the energy (20). Most solutions are periodic; the pendulum either swings
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back and forth or around and around. There is a center equilibrium point at the bottom of
its arc and a saddle point at the top.

The numerical solutions with all three methods were computing using step size ∆t = 0.1
for 200 steps, with initial condition q(0) = −3π/4, p(0) = 0. The exact solution through
this is point is a closed energy level set, the pendulum swings back and forth. The forward
Euler solution is seen to spiral outwards, gaining speed until it crosses the separatrix. The
backward Euler solution spirals inward towards the center equilibrium point. The symplectic
Euler solution appears to be a closed periodic orbit. What does backward error analysis tell
us about this problem?

The Jacobian for the pendulum is

f ′(q, p) =

[
0 1

− cos q 0

]
.

The O(∆t) perturbation in the modified vector field for the forward Euler method is

f1 = −1

2
f ′f =

(
−1

2 sin q
−1

2p cos q

)
.

This vector field is plotted in the leftmost frame of Figure Figure 4. Note that the component
of the vector field that is normal to the level sets of constant energy is everywhere pointing
outwards. The center point becomes an unstable equilbrium. The effect of this perturbation
is an increase in energy along each trajectory, which is consistent with the behavior exibited
by forward Euler.

It may come as no surprise that the O(∆t) perturbation of backward Euler is just the negative
of that of forward Euler, as was also the case for the principle term in the local error of
backward Euler. We have

f1 =
1

2
f ′f =

(
1
2 sin q

1
2p cos q

)
,

and this vector field is plotted in the second frame of Figure Figure 4. In this case the
perturbation causes a decrease in energy along each trajectory, and the center point becomes
a stable equilibrium.

For the symplectic method, we expand the numerical solution for pn+1 about time tn

qn+1 = qn = ∆tpn

pn+1 = pn −∆t(sin qn + ∆tq̇n cos qn +O(∆t2))

= pn −∆t sin qn −∆t2pn cos qn +O(∆t3).

The term f1 must to be chosen such that the O(∆t2) terms agree:

f1(qn, pn) +
1

2
f ′(qn, pn)f(qn, pn) =

(
0

−pn cos qn

)
,

14



that is,

f1(q, p) =

(
1
2 sin qn

−1
2pn cos qn

)
.

The pendulum equations can be written in the form of a skew-symmetric matrix times a
gradient, as in the previous section, to make it more explicit that (20) is conserved. Let
y = (q, p)T ; then

y′ = J−1∇H(y), J−1 :=

[
0 I
−I 0

]
.

The modified vector field f1 can also be written as a product of J−1 and a gradient, namely,

f1 = J−1∇H1(y), H1(q, p) =
1

2
p sin q

It follows that the 1-term modified equation is

ỹ′ = J∇ (H(ỹ) + ∆tH1(ỹ)) ,

which also has a conserved quantity H̃ = H+∆tH1. In particular, this means that the 1-term
modified equation also has periodic solutions. The level sets of H̃ are plotted in the third
frame of Figure Figure 4, using a larger stepsize perturbation ∆t = 0.2 to exaggerate the
effect.

Note that H̃ is not a conserved quantity of the numerical method, since we have only used a
single term in the modified equation expansion. However, since the symplectic Euler method
is a second order accurate approximation to this modified equation, we would expect that H̃
to be better preserved than H.
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Figure 3. Numerical solutions of the nonlinear pendulum superimposed over the energy level sets.
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Figure 4. Vector field perturbation f1 for forward Euler (left) and backward Euler (center). On the right
are the energy level sets of the 1-term modified equation for the symplectic Euler method.
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8. The Korteweg-de Vries equation. A soliton was famously first observed in nature by
civil engineer John Scott Russell in 1834, while studying wave motion for the design of canal
boats. He wrote:

I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped—not so the mass
of water in the channel which it had put in motion; it accumulated round
the prow of the vessel in a state of violent agitation, then suddenly leaving it
behind, rolled forward with great velocity, assuming the form of a large solitary
elevation, a rounded, smooth and well-defined heap of water, which continued
its course along the channel apparently without change of form or diminution
of speed. I followed it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour [14 km/h], preserving its original figure some
thirty feet [9 m] long and a foot to a foot and a half [300–450 mm] in height.
Its height gradually diminished, and after a chase of one or two miles [2–3 km]
I lost it in the windings of the channel. Such, in the month of August 1834,
was my first chance interview with that singular and beautiful phenomenon
which I have called the Wave of Translation. (Source: Wikipedia)

A soliton is a localized nonlinear wave form that translates at constant speed without deform-
ing. The Korteweg-de Vries equation

(21) ut − 6uux + uxxx = 0

is an example of a nonlinear wave equation that supports soliton solutions of the form

u(x, t) = − c
2

sech2

[√
c

2
(x− ct)

]
,

where c is the soliton wave speed. The Korteweg-de Vries equation is an example of a Hamil-
tonian partial differential equation.

9. Variational derivatives. Hamiltonian partial differential equations constitute an analog
of the above concepts (i.e. Hamiltonian ODEs) on an infinite dimensional phase space. Their
proper definition requires a few more formal notions.

First, we define a connected domain D ⊂ R. We generally choose the interval D = [0, L].
Let V denote a space of smooth functions D → Rd. Note these are vector valued functions of
space and time in general. We do not specify V but will assume that its elements are smooth
with smooth derivatives to a certain order as needed for our application. We also assume that
V is equipped with an inner product denoted 〈·, ·〉 such that

〈u, v〉 =

∫ L

0
u(x)T v(x) dx, ∀u, v ∈ V.

We will define Hamiltonian partial differential equations on V. For the purposes of these notes
we assume periodic boundary conditions u(x+ L) = u(x) for all u ∈ V.
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Figure 5. A collision of two solitons in the KdV equation. Left: initial condition; right: space-time plot of
−u(x, t).

A functional F [u] : V → R is defined as an integral of functions of u and its spatial derivatives
ux, uxx, and so forth. For example, we may write

F [u] =

∫ L

0
f(u, ux, uxx) dx =

∫ L

0
u3 +

u2
x

2
dx.

The notation F [u] emphasizes the functional dependence of F on its argument u.

We may define a derivative of the functional F with respect to its argument, the function
u. Such a derivative is called a variational derivative. To do so we go back to the definition
of the derivative. The variational derivative of F , denoted δF

δu is defined weakly through the
relation

(22) 〈δF
δu
, v〉 = lim

ε→0

1

ε
(F [u+ εv]−F [u]) , ∀v ∈ V.

Let us consider some examples. Consider the functional

F [u] =

∫ L

0
u3 dx.

where u(x) : D → R is scalar valued. Note that

F [u+ εv] =

∫ L

0
(u+ εv)3 dx.
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The variational derivative satisfies

〈δF
δu
, v〉 = lim

ε→0

1

ε

∫ L

0
(u+ εv)3 − u3 dx,

= lim
ε→0

1

ε

∫ L

0
u3 + 3εu2v + 3ε2uv2 + ε3v3 − u3 dx,

= lim
ε→0

∫ L

0
3u2v + ε3uv2 + ε2v3 dx,

=

∫ L

0
3u2v dx,

= 〈3u2, v〉.

Therefore we have δF
δu = 3u2. Note that in this case, the variational derivative is just the

usual derivative of the integrand u3.

As a second example, consider the functional

F [u] =

∫ L

0

u2
x

2
dx.

In this case we have

F [u+ εv] =

∫ L

0

(ux + εvx)2

2
dx.

We compute the variational derivative

〈δF
δu
, v〉 = lim

ε→0

1

ε

∫ L

0

(ux + εvx)2

2
− u2

2
dx,

= lim
ε→0

1

ε

∫ L

0

1

2
(u2
x + 2εuxvx + ε2v2

x − u2
x) dx,

= lim
ε→0

∫ L

0
uxvx +

ε

2
v2
x dx,

=

∫ L

0
uxvx dx.

This relation is not yet in the form of (22) because we cannot write it as an inner product
with the (arbitrary) function v. To do so, we need to integrate by parts, and this requires
using the boundary conditions. We compute∫ L

0
uxvx dx =

∫ L

0

∂

∂x
(uxv)− uxxv dx = uxv

∣∣L
0

+

∫ L

0
(−uxx)v dx.

Since we work with periodic boundary conditions, the first term is zero. The second term is
in the correct form:

〈δF
δu
, v〉 = 〈−uxx, v〉.
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From this, we see that δF
δu = −uxx.

One may check that for a functional of the form

F [u] =

∫ L

0
f(u, ux, uxx, uxxx, . . . ) dx,

the variational derivative is

δF
δu

=
∂f

∂u
− ∂

∂x

(
∂f

∂ux

)
+

∂2

∂x2

(
∂f

∂uxx

)
− ∂3

∂x3

(
∂f

∂uxxx

)
+ · · ·

For example, consider

F [u] =

∫ L

0
uu2

x dx.

Here we have f(u, ux) = uu2
x, ∂f/∂u = u2

x, ∂f/∂ux = 2uux. The variational derivative
is

δF
δu

=
∂f

∂u
− ∂

∂x

(
∂f

∂ux

)
= u2

x −
∂

∂x
(2uux)

= u2
x − (2u2

x + 2uuxx)

= −u2
x − 2uuxx.

If F is a functional of more than one function (equivalently, of a vector function u), one may
compute variational derivatives with respect to any of these (components).

F [u,w] =

∫ L

0
uxw dx,

δF
δw

= ux,
δF
δu

= − ∂

∂x

∂f

∂ux
= − ∂

∂x
w = −wx.

10. Hamiltonian partial differential equation. A Hamiltonian partial differential equa-
tion has the form

∂u

∂t
= J δH

δu
,

where u(t, x) : R × D → Rd. If d = 1, then we assume u(t) ∈ V for all t ≥ 0, and if d > 1,
we assume each component of u is an element of V for all t ≥ 0, i.e. u(t) ∈ Vd, t ≥ 0. The
Hamiltonian is a functional H[u] : Vd → R. The operator J is skew-symmetric with respect
to the inner product 〈·, ·〉 : V × V → R. That is,

〈u,J v〉 = −〈v,J u〉, ∀u, v ∈ Vd.

The operator J may be a matrix (if d > 1) or a differential operator J = ∂
∂x (check that this

operator is skew symmetric for d = 1!) or a combination of these.
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Let us consider an example. The sine-Gordon equation is

qtt = qxx − sin q.

This equation can be written in the form of a Hamiltonian PDE by introducing the function
p = qt and defining u(t, x) = (q(t, x), p(t, x))T . The Hamiltonian structure is given by

H[q, p] =

∫ L

0

p2

2
+
q2
x

2
− cos q dx, J =

[
0 1
−1 0

]
.

for which

ut = J δH
δu

⇐⇒
(
qt
pt

)
=

[
0 1
−1 0

](
δH/δq
δH/δp

)
⇐⇒ qt = p

pt = qxx − sin q.

A second example is the simple advection equation ut = ux. This PDE has the rather obvious
Hamiltonian structure:

H[u] =

∫ L

0

u2

2
dx, J =

∂

∂x
.

The Hamiltonian is a conserved integral of a Hamiltonian PDE. To see this, compute

d

dt
H[u(t)] = 〈δH

δu
, ut〉 = 〈δH

δu
,J δH

δu
〉 = 0,

by the skew-symmetry of J . For the previous example, we an check this:

d

dt
H[u(t)] =

d

dt

∫ L

0

u2

2
dx =

∫ L

0
uut dx =

∫ L

0
uux dx =

∫ L

0

∂

∂x

(
u2

2

)
dx =

u2

2

∣∣∣∣L
0

= 0,

where the last equality follows from the periodic boundary conditions.

For the sine-Gordon equation we verify

d

dt

∫ L

0

p2

2
+
q2
x

2
− cos q dx, =

∫ L

0
ppt + qxqxt + sin qqt dx,

=

∫ L

0
p(qxx − sin q) + qxpx + p sin q dx,

=

∫ L

0
pqxx + qxpx dx,

=

∫ L

0
−pxqx + qxpx dx = 0,

where we integrated by parts once.
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Another conserved integral of the sine-Gordon equation is the linear momentumM =
∫
pqx dx.

We verify:

d

dt
M =

d

dt

∫ L

0
pqx dx,

=

∫ L

0
ptqx + pqxt dx,

=

∫ L

0
(qxx − sin q)qx + ppx dx,

=

∫ L

0

∂

∂x

(
q2
x

2
+ cos q +

p2

2

)
dx = 0,

where, again, the periodic boundary conditions have been used to equate the last integral to
zero.

One may verify that the Korteweg-de Vries equation (21) is a Hamiltonian PDE with

(23) H[u] =

∫
u3 +

u2
x

2
dx

and skew-symmetric form J = ∂
∂x .

11. Hamiltonian spatial discretization. The goal of discretization of Hamiltonian PDEs
is to cast the discrete ODEs in the form of a Hamiltonian ODE, since this will imply that there
is a conserved approximation of the Hamiltonian (total energy), and allows the use of symplec-
tic time integrators. A secondary objective is the preservation of other conserved integrals.
However, it may not be possible preserve all first integrals under discretization.

Our first step is to define the vector space upon which the solution will be defined. This is
done by defining a mesh xi = i∆x, i = 0, . . . , N , ∆x = L/N . (In some applications it is
useful to define a dual mesh as well, but that is beyond our scope here.) The discrete vector
space V ⊂ RN consists of functions on the mesh, denoted by u(t) ∈ V , where ui(t) ≈ u(t, xi),
i = 0, . . . , N − 1. Here the periodic boundary conditions mean we identify uN = u0, etc. We
may also have vector valued grid functions u ∈ V d.

Additionally we define an inner product on V d:

〈u, v〉 =
N−1∑
i=0

uTi vi ∆x.

Given a function F : V → R, we can define the variational derivative with respect to the
inner product 〈·, ·〉,

(24) 〈δF
δu
, v〉 = lim

ε→0

1

ε
(F (u+ εv)− F (u)) , ∀v ∈ V
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We consider examples analogous to the first two examples in the continuous case. First,

F (u) =
N−1∑
i=0

u3
i ∆x.

The variational derivative is

〈δF
δu
, v〉 = lim

ε→0

1

ε

N−1∑
i=0

[
(ui + εvi)

3 − u3
i

]
∆x,

= lim
ε→0

1

ε

N−1∑
i=0

[
u3
i + ε3u2

i vi + ε23uiv
2
i + ε3v3

i − u3
i

]
∆x,

= lim
ε→0

N−1∑
i=0

[
3u2

i vi + ε3uiv
2
i + ε2v3

i

]
∆x,

=

N−1∑
i=0

3u2
i vi ∆x.

The last line is in the form of the inner product with v, so the variational derivative is
δF/δu = 3u2 (where the square is applied elementwise).

As a second example consider

F (u) =
N−1∑
i=0

1

2

(
ui+1 − ui

∆x

)2

∆x.

The variational derivative is

〈δF
δu
, v〉 = lim

ε→0

1

ε

N−1∑
i=0

[
1

2

(
ui+1 + εvi+1 − ui − εvi

∆x

)2

− 1

2

(
ui+1 − ui

∆x

)2
]

∆x,

= lim
ε→0

1

ε

N−1∑
i=0

∆x

2∆x2

[
(ui+1 − ui)2 + 2ε(ui+1 − ui)(vi+1 − vi) + ε2(vi+1 − vi)2 − (ui+1 − ui)2

]
,

= lim
ε→0

N−1∑
i=0

∆x

2∆x2

[
2(ui+1 − ui)(vi+1 − vi) + ε(vi+1 − vi)2

]
,

=

N−1∑
i=0

1

∆x2
(ui+1 − ui)(vi+1 − vi) ∆x.

To cast this in the form of an inner product with arbitrary v, we use the periodic boundary
conditions and note that

N−1∑
i=0

vi+1(ui+1 − ui) ∆x =
N−1∑
i=0

vi(ui − ui−1) ∆x.
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Consequently,

〈δF
δu
, v〉 =

N−1∑
i=0

1

∆x2
(ui − ui−1 + ui − ui+1)vi∆x =

N−1∑
i=0

(
−ui+1 − 2ui + ui−1

∆x2

)
vi ∆x.

From this it follows that δF/δu is given by the standard central approximation of the second
derivative:

(δF/δu)i = −ui+1 − 2ui + ui−1

∆x2
, i = 0, . . . , N − 1.

Construction of a Hamiltonian spatial discretization proceeds by choosing a quadrature H(u)
to approximate the functional H[u] (by a sum), and choosing an approximation J for the
operator J that is skew-symmetric with respect to the discrete inner product. Then the
discretization is defined by

(25) ut = J
δH

δu
,

or in terms of individual grid points,

d

dt
ui =

N−1∑
j=0

Jij
δH

δuj
.

As an example, consider the sine-Gordon equation. We introduce the quadrature

H =

N−1∑
i=0

[
p2
i

2
+

1

2

(
qi+1 − qi

∆x

)2

− cos qi

]
∆x,

for which
δH

δqi
= −qi+1 − 2qi + qi−1

∆x2
+ sin qi,

δH

δpi
= pi.

The operator J is approximated by

J =

[
0 I
−I 0

]
,

where I is the identity matrix of dimension N .

Define

u =

(
q
p

)
.

Then the discretization is given by (25). In terms of components this becomes

d

dt
qi = pi,

d

dt
pi =

qi+1 − 2qi + qi−1

∆x2
− sin qi,

and the Hamiltonian H is a conserved quantity.
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We would like to show that the discretization (25) indeed defines a Hamiltonian ODE (17)
in general. We assume that the inner product 〈·, ·〉 is related to the Euclidean metric by a
symmetric positive definite matrix M :

〈a, b〉 = aTMb, ∀a, b ∈ V d

From the definition of the discrete variational derivative (24), it follows that

〈δF
δu
, v〉 = lim

ε→0

1

ε
(F (u+ εv)− F (u)) ,(

δF

δu

)T
Mv = lim

ε→0

1

ε

(
F (u) + ε∇F (u) · v +O(ε2)− F (u)

)
= ∇F (u)T v,

which must hold for all v ∈ V . We conclude that

δF

δu
= M−1∇F (u).

Furthermore, the condition that J be skew-symmetric with respect to 〈·, ·〉 implies

〈a, Jb〉 = −〈Ja, b〉 ⇒ aTMJb = −aTJTMb, ∀a, b ∈ V d.

It follows that MJ (and consequently JM−1) is a skew-symmetric matrix.

Hence we see that

ut = J
δH

δu
= JM−1∇H(u) = J̃∇H(u)

is Hamiltonian, with skew-symmetric structure matrix J̃ = JM−1.

To see that the Hamiltonian is conserved note that

dH

dt
= ∇H(u) · du

dt
=

(
δH

δu

)T
M
du

dt
= 〈δH

δu
, J
δH

δu
〉 = 0

by the skew-symmetry of J with respect to 〈·, ·〉.

In the example above our choice of inner product is just a scalar multiple of the usual vector
inner product. For this reason, the variational derivative is just a scalar multiple of the
gradient ∇H, and J is a skew-symmetric matrix. Clearly, the resulting discretization defines
a Hamiltonian system, to which we can apply the time integration methods of the previous
sections. The discrete Hamiltonian H will be conserved either exactly or in the sense of
backward error analysis.
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12. Full discretization of the KdV equation. We derive a Hamiltonian splitting method
for the KdV equation. We propose the following quadrature for the Hamiltonian (23)

H =
∑
i

[
u3
i +

1

2

(
ui+1 − ui

∆x

)2
]

∆x

The variational derivative of H is

δH

δui
= 3u2

i −
ui+1 − 2ui + ui−1

∆x
.

To discretize the operator ∂x, we simply use central differences

J =


0 1

2∆x − 1
2∆x

− 1
2∆x

. . .
. . .

. . .
. . . 1

2∆x
1

2∆x − 1
2∆x 0

 .
This construction yields the Hamiltonian ODE

u̇i =
1

2∆x

[
3u2

i+1 − 3u2
i−1 −

ui+2 − 2ui+1 + ui
∆x2

+
ui − 2ui−1 + ui−2

∆x2

]
= 3

u2
i+1 − u2

i−1

2∆x
−

1
2ui+2 − ui+1 + ui−1 + 1

2ui−2

∆x3

To construct an explicit (better said, “only linearly implicit”) splitting method, let us split
the Hamiltonian into three terms H = H1 +H2 +H3, where

H1 =
∑
i odd

u3
i∆x, H2 =

∑
i even

u3
i∆x, H3 =

∑
i

1

2

(
ui+1 − ui

∆x

)2

∆x.

The variational derivatives of these Hamiltonians are, respectively

δH1

δui
=

{
3u2

i , i odd
0, i even,

δH2

δui
=

{
0, i odd
3u2

i , i even,

δH3

δui
= −ui+1 − 2ui + ui−1

∆x2
.

The equations of motion corresponding to the Hamiltonian H1 are

u̇i = 3
2∆x(u2

i+1 − u2
i−1), i even,

u̇i = 0, i odd.

We define the time-∆t flow u(t+ ∆t) = Φ1
∆t(u(t)) corresponding to the exact solution of the

above system

ui(t+ ∆t) =

{
ui(t) + 3∆t

2∆x(ui+1(t)2 − ui−1(t)2), i even,
ui(t), i odd.

26



Similarly, we define the odd flow (due to the even cubic terms in the Hamiltonian) to obtain
Φ2

∆t.

The flow due to H3 is linear and takes the form u̇ = −D3u for discretization matrix D3

associated with the fininte difference formula

u̇i = −
1
2ui+2 − ui+1 + ui−1 + 1

2ui−2

∆x3
.

(The matrix D3 = JD2, where D2 is the standard second order central difference for the
second derivative). We can either solve the above exactly, yielding the time-∆t map

Φ3
∆t = exp(−∆tD3),

or we can use implicit midpoint rule

Φ̃3
∆t = (I +

∆t

2
D3)−1((I − ∆t

2
D3)

A first order time integrator is obtained by composing the flows

Ψ∆t = Φ1
∆t ◦ Φ2

∆t ◦ Φ3
∆t.

A second order time integrator is obtained by symmetric composition

Ψ∆t = Φ1
∆t/2 ◦ Φ2

∆t/2 ◦ Φ3
∆t ◦ Φ2

∆t/2 ◦ Φ1
∆t/2.

The above method, with the implicit midpoint rule approximating Φ3
∆t, was used to compute

the solution shown in Figure 5.

13. Sources. These notes were compiled from material in the three excellent monographs.
Symplectic Runge-Kutta methods are surveyed in:

• J.M. Sanz-Serna & M.P. Calvo, Numerical Hamiltonian Problems, Chapman-Hall,
1994.

More generally, methods that conserve first integrals and symmetries are referred to as “geo-
metric integrators” and studied in

• E. Hairer, C. Lubich & G. Wanner, Geometric Numerical Integration, Springer-Verlag,
Second Edition, 2006.

• B. Leimkuhler & S. Reich, Simulating Hamiltonian Dynamics, Cambridge University
Press, 2005.

The latter book also contains a chapter on Hamiltonian PDEs. Specific ideas on spatial dis-
cretization of Hamiltonian PDEs are well explained in a number of papers by R. I. McLachlan,
for instance (but there are many more):

• R. I. McLachlan, “Spatial discretization of PDEs with integrals”, IMA J. Numer.
Anal. 23 (2003), 645–664.

• A. Kitson, R. I. McLachlan & N. Robidoux, “Skew-adjoint finite difference methods
on nonunform grids”, New Zealand J. Math., 32 (2003) 139–159.
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