
Computer Exercise C1B March 2025

Computer Exercise C1B
Numerical Methods for PDEs

10% of Final Grade

Deadline: See the course webpage.

Individual Work: This is an indvidual assignment.

Submission: Send your report and all MATLAB (or Python) code to: numpde2025ATgmail.com.

PART A (40 points)

Consider the one-dimensional advection equation:

∂u

∂t
=

∂u

∂x
, x ∈ (0, 1), t ∈ (0, 10), (1)

with the initial condition:

u(x, 0) = u0(x) =


e−200(x− 3

10
)2 , for x < 1

2 ,

0, for 1
2 ≤ x ≤ 3

5 or x ≥ 4
5 ,

1, for 3
5 < x < 4

5 .

The equation is subject to periodic boundary conditions:

u(0, t) = u(1, t).

(a) Show that the following quantity is conserved for PDE (1):

Mm(t) =
1

m

∫ 1

0
[u(x, t)]m dx, m ∈ N\{0}.

We define the Courant number as σ = ∆t
∆x . The following finite-difference schemes are used to

numerically approximate solutions of PDE (1):

FTFS: un+1
j = unj + σ(unj+1 − unj ),

FTCS: un+1
j = unj +

σ

2
(unj+1 − unj−1),

FTBS: un+1
j = unj + σ(unj − unj−1),

BTCS: un+1
j = unj +

σ

2
(un+1

j+1 − un+1
j−1 ),

Lax-Friedrichs: un+1
j =

unj+1 + unj−1

2
+

σ

2
(unj+1 − unj−1),

Lax-Wendroff: un+1
j = unj +

σ

2
(unj+1 − unj−1) +

σ2

2
(unj+1 − 2unj + unj−1).

For each of these six methods, answer the following questions:
Hint: For the BTCS method, first rewrite the finite-difference equation into a suitable form.
Hint: Do not be alarmed if some methods turn out to be unconditionally unstable.
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(b) Take ∆x = 1
100 as fixed. Perform several numerical simulations with different values of

the Courant number σ to illustrate the properties of each method. Comment on aspects
such as accuracy, stability, numerical diffusion, numerical dispersion and/or oscillations. If
applicable, determine values for ∆t that result in stable and accurate numerical solutions.
Compare your numerical results with the analytical solution, given by:

u(x, t) = u0
(
(x+ t) mod 1

)
.

(c) Plot relevant numerical solutions to support your answer to part (b). Compare with the
exact solution at t = 0 and t = T = 10.

(d) Verify whether the numerical solution preserves the conserved quantities derived in part
(a) for the following cases:

m = 1 : M(t) =

∫ 1

0
u(x, t) dx, momentum

and

m = 2 : E(t) = 1

2

∫ 1

0
[u(x, t)]2 dx, energy.

Hint: The degree of conservation may depend on the choice of time step ∆t

PART B (30 points)

In phase-field theory, the propagation of domain walls in liquid crystals can be modeled by the
following sixth-order time-dependent PDE:

∂u

∂t
= δ

∂6u

∂x6
+ γ

∂4u

∂x4
+ ϵ

∂2u

∂x2
+ u− u3, (2)

where ϵ, δ, γ ∈ R, and x ∈ [0, L], t ∈ [0, T ]. The initial condition is given by:

u(x, 0) = u0(x).

We consider two special cases:

Case I: Extended Fisher-Kolmogorov Equation

Parameters: δ = 0, γ = −1, ϵ = −2 . Domain: L = 100, T = 10 . Initial Condition:
u0(x) = cos

(
πx
20

)
. Boundary Conditions:

u(0, t) = 1, ux(0, t) = 0,

u(L, t) = −1, ux(L, t) = 0.

(Hint: The corresponding solutions are sometimes called “Batman ears”.)

Case II: Pattern formation in phase transitions

Parameters: δ = 0.12, γ = −0.5, ϵ = 1 . Domain: L = 300, T = 120 . Initial Condition:

u0(x) = e−
x2

16 . Boundary Conditions:

u(0, t) = 1, ux(0, t) = 0, uxx(0, t) = 0,

u(L, t) = 0, ux(L, t) = 0, uxx(L, t) = 0.
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(Hint: The corresponding solutions are sometimes called “travelling oscillatory waves”.)

For both cases, answer the following questions:

(a) Numerically approximate the spatial derivatives in model (2) using central finite difference
schemes.

(b) Determine the numerical boundary conditions. (Hint: There are 4 boundary conditions
for Case I and 6 for Case II.)

(c) Apply the forward Euler method to derive an expression for un+1
i in terms of unj for

j ∈ {1, 2, . . . , I}.

(d) Compute the local truncation error and verify that the error is of orderO((∆t)2,∆t·(∆x)2).

(e) Generate and plot accurate numerical solutions at t = 0 and t = T .

PART C (30 points)

Consider the following infinite-order PDE in one spatial dimension:

∂u

∂t
= α

∞∑
k=0

∂ku

∂xk
, u(x, ·) ∈ C∞(R), t > 0, 0 < x < L, α ∈ R. (3)

(a) Show that the solution u(x, t) of PDE (3) must satisfy the finite-order PDE:

ut = αu+ uxt. (4)

(b) We impose the boundary condition:

ut(0, t) = ut(L, t).

Apply the first step of the Method of Lines to PDE (4): use a central difference approxi-
mation for the spatial derivative and approximate the model as a system of ODEs in the
form:

˙⃗u = Mu⃗.

(c) Let x ∈ [0, 1], t ∈ [0, 20], and the initial condition be u(x, 0) = sin(2πx). Using the
second step of the Method of Lines, solve the system using the Implicit Euler method
for α = −1. Plot the numerical solutions for various step sizes ∆x and ∆t. Assess the
numerical accuracy by comparing the approximations with the exact solution:

u(x, t) = e−βt [− sin(2βπt) cos(2πx) + cos(2βπt) sin(2πx)] ,

where β = 1
1+4π2 .

(d) Plot the eigenvalues of the matrix M and the stability region of the Implicit Euler method
for ∆x = 0.05. Do all eigenvalues fall within the stability region?

(e) Repeat parts (c) and (d) using the Explicit Euler method.

(f) Explain why both the Explicit and Implicit Euler methods are inappropriate for α = 1.

(g) Derive an exact solution for the case α = 1 using the Fourier Transform Method. Compare
this solution with the analytical solution for α = −1 and describe the key difference. You
may use without proof that:

lim
x→±∞

ut(x, t) = 0.
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