Computer Exercise C1B March 2025

Computer Exercise C1B
Numerical Methods for PDEs

10% of Final Grade

Deadline: See the course webpage.
Individual Work: This is an indvidual assignment.

Submission: Send your report and all MATLAB (or Python) code to: numpde2025ATgmail . com.

PART A (40 points)

Consider the one-dimensional advection equation:
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u(x,0) = up(z) = ¢ 0, for }<ax<3orz>4,
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The equation is subject to periodic boundary conditions:
u(0,t) = u(1,1).

(a) Show that the following quantity is conserved for PDE (1):
1 1
M, (t) = / [u(z,t)]™ dz, m e N\{0}.
mJo

We define the Courant number as o = % The following finite-difference schemes are used to
numerically approximate solutions of PDE (1):

FTFS: u;”“l = uj +o(ujyy —uj),

o
FTCS: Wit = (e —uiy),
FTBS: U?+1 =uj +o(uj —uj_q),

o
BTCS: U?+1 =uj + E(U?—tll - u?jll)a

U + ui_
Lax-Friedrichs: u’j“ = % + %(U?H —uj_y),
2

Lax-Wendroff: u}”l =uj + %(U?—i—l —uj_q)+ %(U?+1 — 2uf +ui_q).

For each of these six methods, answer the following questions:
Hint: For the BTCS method, first rewrite the finite-difference equation into a suitable form.
Hint: Do not be alarmed if some methods turn out to be unconditionally unstable.
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(b) Take Az = ﬁ as fixed. Perform several numerical simulations with different values of

the Courant number o to illustrate the properties of each method. Comment on aspects
such as accuracy, stability, numerical diffusion, numerical dispersion and/or oscillations. If
applicable, determine values for At that result in stable and accurate numerical solutions.
Compare your numerical results with the analytical solution, given by:

u(x,t) = uo((z +t) mod 1).
(c) Plot relevant numerical solutions to support your answer to part (b). Compare with the
exact solution at £ =0 and ¢t =T = 10.
(d) Verify whether the numerical solution preserves the conserved quantities derived in part
(a) for the following cases:

1
m=1: M((t)= / u(z,t) dr,  momentum
0

and

1
m=2: £E(t)= ;/ [u(x,t)]? dz,  energy.
0

Hint: The degree of conservation may depend on the choice of time step At

PART B (30 points)

In phase-field theory, the propagation of domain walls in liquid crystals can be modeled by the
following sixth-order time-dependent PDE:

u _ 06J+ %nLe@Jru—ug’ (2)
ot~ C0x6 T Tost T o2 ’

where €,0,7 € R, and x € [0, L], t € [0,7]. The initial condition is given by:
u(z,0) = ug(z).

We consider two special cases:

Case I: Extended Fisher-Kolmogorov Equation

Parameters: § = 0, vy = —1, ¢ = =2 . Domain: L = 100, 7 = 10 . Initial Condition:
up(z) = cos (5¢). Boundary Conditions:

u(0,t) =1, wug(0,t) =0,
u(L,t) =—1, wugz(L,t)=0.

(Hint: The corresponding solutions are sometimes called “Batman ears”.)

Case II: Pattern formation in phase transitions

Parameters: § = 0.12, v = —0.5, e = 1 . Domain: L = 300, 7' = 120 . Initial Condition:

22
up(x) = e~ 16. Boundary Conditions:
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(Hint: The corresponding solutions are sometimes called “travelling oscillatory waves”.)

For both cases, answer the following questions:

(a) Numerically approximate the spatial derivatives in model (2) using central finite difference
schemes.

(b) Determine the numerical boundary conditions. (Hint: There are 4 boundary conditions

for Case I and 6 for Case II.)
(c) Apply the forward Euler method to derive an expression for '

in terms of u? for
je{1,2,...,I}.

(d) Compute the local truncation error and verify that the error is of order O((At)?, At-(Ax)?).

(e) Generate and plot accurate numerical solutions at t =0 and ¢t = 7.

PART C (30 points)

Consider the following infinite-order PDE in one spatial dimension:

00 ok
%:az%, u(z,") €C®(R), t>0, 0<x <L, a€R. (3)
k=0

(a) Show that the solution u(x,t) of PDE (3) must satisfy the finite-order PDE:
Up = QU + Uy (4)

(b) We impose the boundary condition:
ut(oa t) = ut(L> t)

Apply the first step of the Method of Lines to PDE (4): use a central difference approxi-
mation for the spatial derivative and approximate the model as a system of ODEs in the
form:

U = M.

(c) Let x € [0,1], t € [0,20], and the initial condition be u(x,0) = sin(27x). Using the
second step of the Method of Lines, solve the system using the Implicit Euler method
for « = —1. Plot the numerical solutions for various step sizes Ax and At. Assess the
numerical accuracy by comparing the approximations with the exact solution:

u(z,t) = e P! [— sin(2Bnt) cos(2mz) + cos(267t) sin(27x)]

1
Where ﬁ = m

(d) Plot the eigenvalues of the matrix M and the stability region of the Implicit Euler method
for Az = 0.05. Do all eigenvalues fall within the stability region?

(e) Repeat parts (c¢) and (d) using the Explicit Euler method.
(f) Explain why both the Explicit and Implicit Euler methods are inappropriate for a = 1.

(g) Derive an exact solution for the case & = 1 using the Fourier Transform Method. Compare
this solution with the analytical solution for & = —1 and describe the key difference. You
may use without proof that:

xgrinoo ut(z,t) = 0.



