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Abstract. Adaptive moving mesh research usually focuses either on analytical deriva-
tions for prescribed solutions or on pragmatic solvers with challenging physical appli-
cations. In the latter case, the monitor functions that steer mesh adaptation are often
defined in an ad-hoc way. In this paper we generalize our previously used moni-
tor function to a balanced sum of any number of monitor components. This avoids
the trial-and-error parameter fine-tuning that is often used in monitor functions. The
key reason for the new balancing method is that the ratio between the maximum and
average value of a monitor component should ideally be equal for all components.
Vorticity as a monitor component is a good motivating example for this. Entropy also
turns out to be a very informative monitor component. We incorporate the monitor
function in an adaptive moving mesh higher-order finite volume solver with HLLC
fluxes, which is suitable for nonlinear hyperbolic systems of conservation laws. When
applied to compressible gas flow it produces very sharp results for shocks and other
discontinuities. Moreover, it captures small instabilities (Richtmyer-Meshkov, Kelvin-
Helmholtz). Thus showing the rich nature of the example problems and the effective-
ness of the new monitor balancing.
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1 Introduction14

Adaptive mesh methods improve local resolution of numerical solvers and, as a result,15

improve their performance. Results are significantly sharper than those obtained by us-16

ing a uniform mesh with more mesh points. True gain in performance is only obtained,17
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though, when the adaptive methods perform well automatically. This requires a balanced18

monitoring of flow phenomena, without manual fine-tuning of parameters by trial and19

error. This paper presents such a balanced monitoring, combined with a powerful finite20

volume solver, applied to hydrodynamical problems.21

Adaptivity Three types of adaptive methods are generally distinguished: h-, r- and22

p-refinement. The h-refinement or local refinement splits mesh cells into smaller ones23

based on some criterion. This can provide great levels of detail and is widely used in24

CFD-codes. The implementation is nontrivial due to the hierarchical structure of the do-25

main discretisation. The eventual number of mesh cells is sometimes hard to predict,26

which may lead to unexpectedly long running times. Although the initial structure of27

the mesh fixes the shape and orientation of the mesh cells, e.g., rectangular, the unlimited28

amount of possible refinement makes these methods very powerful. In one of our exper-29

iments (Section 5) we will make a comparison between our r-refinement results and the30

h-refinement results produced by AMRVAC [23, 36].31

The r-refinement or (adaptive) moving mesh refinement moves mesh points towards re-32

gions that need refinement based on some criterion. The number of points remains con-33

stant, which gives fairly predictable running times. Besides, the mesh cells can change34

shape, position and orientation, so that alignment with, e.g., shocks or vortices is well35

possible. For specific problems, the fixed number of mesh points may impose a limit on36

the achievable resolution. This paper deals with r-refinement only and shows that it can37

achieve great levels of detail. Tang [32] provides an extensive historical overview of mov-38

ing mesh methods and their applications in CFD. Zegeling [43] presents Winslow-type39

adaptivity applied to a wide range of problems. We also give a detailed and systematic40

overview [35] on Winslow-type adaptivity, harmonic maps, geometric conservation laws41

and more related methods.42

The combination of the above two methods, called hr-refinement combines the ad-43

vantages of both methods and is occasionally used, e.g., by Lang et al. [20] and Anderson44

et al. [1].45

The p- (and hp-) refinement is generally applied in different frameworks than what46

we consider here. It involves the local increase of polynomial order of the basis functions47

in finite element methods.48

Moving mesh research We employ a variational formulation of mesh adaptation, an49

approach which has become well-known over the past five decades. A short historic50

overview of moving mesh methods is given in Section 3.3.1. Tang and Tang [30] pre-51

sented a moving mesh algorithm in a pragmatic combination with a finite volume solver.52

Over the past five years, this inspired several others. The technique is usually applied to53

hydrodynamics (HD), e.g., by Tang [31] and Zegeling et al [44], and to magnetohydro-54

dynamics (MHD), e.g., by Han and Tang [13], Tan [27], Van Dam and Zegeling [39] and55

Zegeling [42]. Moving mesh methods generally have little dependency on the physical56

PDEs under consideration, as diverse applications show, e.g., the Navier-Stokes equa-57

tions by Di et al. [11] and the Hamilton-Jacobi equations by Tang et al. [29]. A similar58
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method, but now using direct minimization of the mesh functional has been used for59

reactive flows in 2D by Azarenok and Tang [2] and multi-phase fluids in 3D by Di et60

al. [10].61

Monitor functions Based on earlier work by Beckett and Mackenzie [3] and Huang [17],62

we formulated an adaptive monitor function that makes manual fine-tuning unneces-63

sary [39]. Here we improve this function in two ways: a slightly changed normalization64

balances all solution components equally, and we propose additional monitor compo-65

nents that detect phenomena that would otherwise be largely overseen.66

Huang has done extensive research on analytical properties of monitor functions and67

the resulting mesh adaptation. Most of that work deals with prescribed solutions, so68

no physical PDE part is involved in the algorithm. This gives a better opportunity for69

analytical discussions, which Huang recently summarized in an overview paper [16].70

Brackbill has done similar research on the combination of several functionals in the71

minimization process (see Section 3.3.1). Besides combining mesh quality functionals [6,72

with Saltzman] he also combined an alignment functional with a solution adaptivity73

functional in order to obtain directional control [5]. Directional monitor functions have74

been widely used ever since, for example by Glasser et al. [12] in a more analytical con-75

text. Tang [31] applies a directional monitor function to the two-dimensional Euler equa-76

tions and Tan [27] uses an identical monitor for a two-dimensional resistive MHD model.77

We will also use such a directional monitor function as it produces much higher quality78

meshes at negligible costs.79

Structure This paper is organized as follows. Section 2 briefly recalls the physics behind80

compressible gas flow and mentions some relevant flow quantities. Section 3 provides a81

detailed description of our moving mesh finite volume solver. The first part concerns the82

finite volume solver with HLLC fluxes, nonuniform solution reconstruction and slope83

limiting. The second part concerns the mesh movement, its history and our current algo-84

rithm. Section 4 presents the main contribution of this paper: a balanced monitor function to85

capture various flow phenomena. Section 5 contains three example problems that were86

already partly used in the preceding sections and are then further explored. Section 687

summarizes our findings and gives some recommendations for further research.88

2 Phenomena in compressible gas flow89

The first system of PDEs that comes to mind when testing moving mesh methods on flow90

problems are the equations of compressible gas dynamics. Forming a nonlinear system91

of hyperbolic PDEs, they can result in several wave types, possibly interacting, without92

requiring additional conditions from the numerical solver, such as the divergence-free93

magnetic field condition in ideal MHD simulations would do.94

In the following sections the physical model and several physical features in com-95

pressible gas flow are described, where some expressions are already specialized into96

their two-dimensional form.97
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2.1 Physical model98

The time evolution of a compressible gas is described by the Euler equations:99

∂

∂t




ρ
ρv
E


+∇·




ρv

ρvv+pI
(E+p)v


=




0
0
0


, (2.1)

where the two-dimensional advection is denoted as v := [u,v]T . The divergence of the100

flux tensor results in, e.g.,101

∇·ρvv≡
∂

∂x
ρuv+

∂

∂y
ρvv.

The system (2.1) is closed by the standard equation of state:102

E=
p

γ−1
+

1

2
ρv·v,

where γ is the adiabatic constant, specifying the ratio of specific heats.103

contact discontinuity
(CD)

rarefaction fan (RF) shock wave

Figure 1: Elementary wave structure of the hyperbolic Euler equations for one-dimensional compressible gas
flow. The three wave types form the building blocks of wave interactions in two dimensions.

2.2 Relevant flow features104

Analysis of shock waves and other features in compressible gas flow is easiest in a one-105

dimensional setting. For completeness, Fig. 1 shows the elementary wave structure that106

results from an initially discontinuous solution. Remember that not all solution quantities107

change value across all waves. For example, the thermal pressure108

p=(γ−1)(E−
1

2
ρv·v) (2.2)

is constant across the contact discontinuity (CD). Similarly, the entropy, defined as109

S= log

(
p

ργ

)
, (2.3)
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is constant across the rarefaction fan (RF). It is still an interesting quantity, though, as110

rapid changes in entropy indicate a high potential for the emergence of new flow fea-111

tures. These observations will be relevant in selecting flow quantities upon which mesh112

adaptivity is based.113

The three elementary wave types above will also appear in problems on two-dimens-114

ional domains. They are essentially the same, except that they can appear in any direc-115

tion. Moreover, they are likely to meet and interact over time. Schulz-Rinne et al. [25]116

give a classification of fifteen different solutions for two-dimensional Riemann problems,117

which was later corrected by Lax and Liu [21] to nineteen different solutions. All make118

the same assumption that each initial discontinuity produces only one type of elemen-119

tary wave. More freedom in the initial solutions would greatly increase the number of120

possible outcomes.121

Possible new flow features include Mach reflections between shock lines or at rigid122

walls or CDs bending into spirals. In Section 5 we will use one of these example problems123

to test our adaptive method on. Amongst others, we will investigate whether entropy124

gradients or local vorticity ‖∇×v‖ are good detectors of more subtle flow features.125

3 An adaptive moving mesh solver for conservation laws126

The conservation law PDEs are solved by an explicit time integration using finite vol-127

umes, combined with time dependent mesh movement to capture evolving flow fea-128

tures. The finite volume solver is discussed in Section 3.2 and the mesh movement in129

Section 3.3.130

3.1 Physical problem description131

We use a solver that is suitable for nonlinear systems of hyperbolic PDEs in general:132

∂

∂t
q+

∂

∂x
f(q)+

∂

∂y
g(q)=0, q([x,y],t)∈R

M . (3.1)

The Euler equations for compressible gas dynamics (2.1) are in the above form and will be133

the leading example in this paper. Basic meteorological models as well as the advection134

model fit in the same form. We have readily extended the solver to two-dimensional ideal135

magnetohydrodynamics too.136

The domain Ω is defined and discretised as follows:

Ω :=[xmin,xmax]×[ymin,ymax]=
⋃

j=0,···,Nx−1, k=0,···,Ny−1

Aj+ 1
2 ,k+ 1

2
, (3.2)

Aj+ 1
2 ,k+ 1

2
:=quadrilateral cell with corners xj+c,k+d, c,d∈{0,1}, (3.3)

xj,k :=[xj,k,yj,k] for j=−2,··· ,Nx +2 and k=−2,··· ,Ny+2. (3.4)
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The mesh points xj,k are not uniformly distributed: the mesh is logically rectangular, but137

can be solution adaptive in physical space. The domain is now covered by Nx×Ny convex138

quadrilaterals Aj+ 1
2 ,k+ 1

2
. Besides, there are two rows and columns of ghost cells beyond139

all four domain boundaries to facilitate the second order stencils of the finite volume140

solver.141

3.2 Second order finite volumes142

The finite volume method employed is of second order and uses MUSCL-type solution143

reconstruction with slope limiting and local Lax-Friedrichs and HLLC numerical fluxes,144

which we will now discuss in more detail.145

Finite volume solvers use average solution values on all mesh cells:146

Qn
j+ 1

2 ,k+ 1
2
≈

∫∫

A
j+ 1

2 ,k+ 1
2

q([x,y],tn)dxdy/|An
j+ 1

2 ,k+ 1
2
|, (3.5)

where |An
j+ 1

2 ,k+ 1
2

| is the area of cell Aj+ 1
2 ,k+ 1

2
at time tn.147

The integral form of the PDEs (3.1) leads to the well-known finite volume discretisa-
tion:

Qn+1
j+ 1

2 ,k+ 1
2

=Qn
j+ 1

2 ,k+ 1
2
−

∆tn

|An
j+ 1

2 ,k+ 1
2

|

(
|hn

j+1,k+ 1
2
|F̆j+1,k+ 1

2
−|hn

j,k+ 1
2
|F̆j,k+ 1

2

+|hn
j+ 1

2 ,k+1
|Ğj+ 1

2 ,k+1−|h
n
j+ 1

2 ,k
|Ğj+ 1

2 ,k

)

=: Qn
j+ 1

2 ,k+ 1
2
+∆tn Lj+ 1

2 ,k+ 1
2
(Qn), (3.6)

where F̆ and Ğ approximate the normal fluxes across the logically vertical and horizontal148

edges, respectively, averaged over the time range [tn,tn+1]. The length of the left edge of149

a cell Aj+ 1
2 ,k+ 1

2
is denoted by |hj,k+ 1

2
|.150

Fig. 2 depicts the construction of the net, i.e., normal flux across a logically vertical151

edge. In general we can define the flux normal across an edge by taking the inner product152

of the flux tensor [F,G]T with the edge’s normal, but here we can instead exploit the153

rotational invariance of the Euler equations:154

F̆(Q)=cos(θ)F(Q)+sin(θ)G(Q)=T−1(F(T(Q))), (3.7)

where T :=T(θ) is the rotation matrix and T−1 :=T−1(θ) its inverse for rotating back:155

T(θ)=




1 0 0 0
0 cosθ sinθ 0
0 −sinθ cosθ 0
0 0 0 1


, T−1(θ)=




1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1


. (3.8)
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G

F̂ = F(T(Q)) ≡ F̆

[F,G]T

θ

n = [cos θ, sin θ]T

F

Ĝ

xj+ 1
2
,k− 1

2

xj+ 1
2
,k+ 1

2

y
ŷ

x

x̂

Figure 2: Rotation of the flux tensor into the (logically vertical) edge’s normal reference frame. For ease of

notation, F denotes the tensor [F,0]T, and similar for G, F̂ and Ĝ.

Eq. (3.7) describes how Q is first rotated over an angle θ into a new reference frame as156

Q̂=T(Q) where the new x̂-direction aligns with the edge’s normal. Now, only F(T(Q))157

needs to be evaluated, since flux G(T(Q)) aligns exactly with the edge and thus has158

zero contribution to the net flux through the edge. Finally, the flux is rotated back into159

the physical reference frame. This saves us one flux evaluation at each edge and more160

importantly, the numerical flux evaluation on the edge is now essentially reduced to a161

one-dimensional problem. This greatly simplifies the use of more advanced approximate162

Riemann solvers, such as the HLLC solver described in Section 3.2.2. Also note that for163

Ğ on logically horizontal edges, the exact same procedure can be used and again only flux164

F(Q̂) needs to be evaluated, i.e., G can be discarded completely.165

3.2.1 Solution reconstruction and slope limiting on nonuniform meshes166

The fluxes are functions of the solution q, so for evaluating the fluxes at the cell edges, so-167

lution values first need to be reconstructed from the cell centered values Qj+ 1
2 ,k+ 1

2
. We use168

piecewise linear MUSCL reconstruction as proposed by Van Leer [37,38], combined with169

the van Leer slope limiter. We will now describe the logically horizontal reconstruction170

of Qn
j,k+ 1

2

at a vertical edge, the procedure for the other direction is of course similar.171

The solution reconstruction is depicted in Fig. 3. It is done over the line segment ln
j,k+ 1

2

172

between the cell centers xn
j− 1

2 ,k+ 1
2

and xn
j+ 1

2 ,k+ 1
2

, which intersects with the edge hn
j,k+ 1

2

. The173

adaptive meshes that occur in our experiments have a smooth enough ‘curvature’ to174

assume that the intersection of this line and the edge lies approximately at the center of175

the edge:176

an
j,k+ 1

2
:= ln

j,k+ 1
2
∩hn

j,k+ 1
2
≈ (xn

j,k +xn
j,k+1)/2=: xn

j,k+ 1
2
. (3.9)



 G
al

le
y 

Pr
oo

f8 A. van Dam and P. A. Zegeling / Commun. Comput. Phys., x (200x), pp. 1-33

lj+ 1
2
,k

xj+ 1
2
,k− 1

2

hj+ 1
2
,k

Q j,k →
Q

−

j+
1

2
,k
Q

+

j+
1

2
,k
← Q j+1,k

xj+ 1
2
,k+ 1

2

: xj+ 1
2
,k

: aj+ 1
2
,k

Figure 3: Solution reconstruction on a nonuniform mesh.

The linear reconstructions on a nonuniform mesh are then given by:177

Qn,±
j,k+ 1

2

=Qn
j± 1

2 ,k+ 1
2
∓‖xn

j,k+ 1
2
−xn

j± 1
2 ,k+ 1

2
‖2 S̄n

j± 1
2 ,k+ 1

2
, (3.10)

where S̄n
j+ 1

2 ,k+ 1
2

is the limited slope approximation on the cell as defined below,

S̄n
j+ 1

2 ,k+ 1
2
=φ(Sn

j+1,k+ 1
2
/Sn

j,k+ 1
2
)Sn

j,k+ 1
2
, (3.11)

Sn
j,k+ 1

2
=

Qn
j+ 1

2 ,k+ 1
2

−Qn
j− 1

2 ,k+ 1
2

‖xn
j+ 1

2 ,k+ 1
2

−xn
j− 1

2 ,k+ 1
2

‖
, (3.12)

where φ is the van Leer limiter:178

φ(r)=
r+|r|

1+r
. (3.13)

Other well-known slope limiters, such as the Woodward or Koren limiters may be used179

instead. Note that the reconstruction (3.10) incorporates the mesh nonuniformity and180

thus is more accurate than when reconstruction is done entirely in the logical domain.181

Genuinely multidimensional reconstruction and slope limiting was studied by, e.g.,182

Hubbard [18] and Berger et al. [4]. In the latter, this even involves solving linear program-183

ming problems at each cell interface. Our experience is that our quasi-one-dimensional184

approach (3.10) proves robust for a wide range of problems.185

3.2.2 Approximate Riemann solvers186

The numerical fluxes in (3.6) are supposed to be averaged at the edge over the time inter-187

val [tn,tn+1]. The reconstructed solution values188

QL :=Qn,−
j,k+ 1

2

and QR :=Qn,+
j,k+ 1

2

(3.14)

form a local Riemann problem at the edge. We consider an exact Riemann solver too189

expensive here, so we use the local Lax-Friedrichs (LLF) flux and the HLLC flux approx-190

imations.191
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Local Lax Friedrichs192

The LLF—or Rusanov [24]—flux averages the left and right fluxes and adds a stabilizing193

numerical diffusion locally:194

Fllf(QL,QR)=
1

2
(f(QL)+f(QR))−

1

2
max

K∈{L,R}
|λmax(QK)|(QR−QL), (3.15)

where |λmax| is the largest absolute eigenvalue of the flux Jacobian ∂f/∂q and QK repre-195

sents either the left or right solution state. The Lax-Friedrichs flux thanks its robustness to196

its diffusive nature and the local diffusion constant of LLF limits this enough to still obtain197

accurate results. Especially in combination with adaptive meshes we obtained good re-198

sults for one-dimensional magnetohydrodynamics [39]. In two dimensions shock waves199

are also captured very well, but more delicate flow features are not. The moving mesh200

algorithm can not properly detect these delicate features, because LLF has diffused the so-201

lution beforehand. This is the reason why we will use HLLC fluxes instead. Section 5.1.1202

compares results obtained with LLF and HLLC fluxes.203

HLLC204

The MUSCL-LLF combination may be of second order accuracy, it still uses a fairly crude205

approximation of the actual fluxes across cell edges. This is because it always uses the206

fastest wave speed to add some local numerical viscosity to the numerical flux function207

(3.15). It is especially the middle wave, the contact discontinuity (CD) that is harmed by208

this approximation. Much more viscosity than necessary is added and the sharpness of209

the CD is generally worse than that of the faster left and right waves.210

Harten et al. [14] proposed a new approximate Riemann solver to obtain Godunov-211

type fluxes, which is now widely known as the HLL Riemann solver. It distinguishes be-212

tween the leftmost and rightmost waves in a local Riemann problem and approximates213

the intermediate state by averaging. It still overlooks the CD though. We will now elab-214

orate on this approach in the more general setting of the HLLC solver. The definitions215

below are complete, but a more in-depth discussion is given by Toro [34].216

Toro et al. [33] proposed an improved version of the HLL solver that accurately cap-217

tures the middle CD wave from the Euler equations. Hence the name HLLC solver. The218

underlying idea is to distinguish three instead of two waves that emanate from the local219

Riemann problem between two solution states on the neighboring cells, see Fig. 4.220

The local Riemann problem (QL,QR) is one-dimensional due to the rotated reference221

frame (see Section 3.2). Along each path x̃/t the solution is constant (where x̃ := x̂− x̂j de-222

notes the local coordinate) and the position of this path relative to the three characteristic223

waves determines in which regime the solution falls:224

Qhllc
j =





QL if x̃/t≤SL,

Q∗L if SL≤ x̃/t≤S∗,

Q∗R if S∗≤ x̃/t≤SR,

QR if SR≤ x̃/t.

(3.16)
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Local Lax-Friedrichs HLL HLLC

QR QR QR

−S+ SL SR SL S∗ SR

QL QL QL

Q
∗R

Q∗ Q
∗L

Q∗

S+

x x x

Figure 4: Approximate Riemann solvers: Local Lax Friedrichs, HLL and HLLC. The difference lies in the number
of different wave speeds that are used. In between waves, the solution is approximated by a constant state.

By applying Rankine-Hugoniot conditions to the jumps across each of the waves SL, S∗225

and SR, and using additional knowledge about the exact solution jumps across these226

waves, we obtain the solution vectors in the two intermediate states:227

Q∗K =ρK

(
SK−uK

SK−S∗

)



1
S∗
vK

EK
ρK

+(S∗−uK)
(

S∗+
pK

ρK(SK−uK)

)


 for K = L and K = R. (3.17)

The numerical flux is evaluated at the edge, i.e., x̃/t=0:228

Fhllc
j+ 1

2
=





FL if 0≤SL,

F∗L =FL+SL(Q∗L−QL) if SL≤0≤S∗,

F∗R =FR+SR(Q∗R−QR) if S∗≤0≤SR,

FR if SR≤0.

(3.18)

The left- and right-most wave speeds are chosen as follows:229

SL =min{(u−c)L,(u−c)R} and SR =max{(u+c)L,(u+c)R}, (3.19)

where c is the sound speed. The speed S∗ of the intermediate wave can be obtained by230

realizing that the pressure is constant across a CD: p∗L = p∗R, which gives:231

S∗=
pR−pL+ρLuL(SL−uL)−ρRuR(SR−uR)

ρL(SL−uL)−ρR(SR−uR)
. (3.20)

When SR (or SL) and S∗ coincide, HLLC reduces to HLL. Besides, when we set SL=−SR=232

−maxK∈{L,R} |λmax|K in HLL, the method reduces to LLF. Experiments confirm this up to233

machine precision.234
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3.2.3 Two-step explicit time integration235

The PDEs (3.1) are integrated in time by Heun’s predictor-corrector method, which has236

second-order accuracy. Using the notation from (3.6), we now use two FV-steps:237

Q∗
j+ 1

2 ,k+ 1
2
=Qn

j+ 1
2 ,k+ 1

2
+∆tn Lj+ 1

2 ,k+ 1
2
(Qn),

Qn+1
j+ 1

2 ,k+ 1
2

=Qn
j+ 1

2 ,k+ 1
2
+∆tn

Lj+ 1
2 ,k+ 1

2
(Qn)+Lj+ 1

2 ,k+ 1
2
(Q∗)

2
,

(3.21)

where the Lj+ 1
2 ,k+ 1

2
(Q) operator computes the discretised flux gradients by the MUSCL-238

HLLC combination described before.239

Since the underlying mesh is nonuniform, the CFL stability condition is enforced on240

each mesh cell locally. We define the quasi-one-dimensional mesh cell sizes in the rotated241

frame as:242

∆x̂n
j+ 1

2 ,k+ 1
2

:=
|An

j+ 1
2 ,k+ 1

2

|

max{|hn
j,k+ 1

2

|, |hn
j+1,k+ 1

2

|}
, ∆ŷn

j+ 1
2 ,k+ 1

2
:=

|An
j+ 1

2 ,k+ 1
2

|

max{|hn
j+ 1

2 ,k
|, |hn

j+ 1
2 ,k+1
|}

. (3.22)

Next, we apply the CFL-stability criterion in the following way:243

∆tn≤Cmin
j,k

min{∆x̂n
j+ 1

2 ,k+ 1
2

,∆ŷn
j+ 1

2 ,k+ 1
2

}

max{|λ1,max(Qn
j+ 1

2 ,k+ 1
2

)|, |λ1,max(Qn
j+ 1

2 ,k+ 1
2

)|}
, (3.23)

where λ1,max and λ2,max are the largest eigenvalues in the x- and y-direction, respectively.244

A looser CFL-criterion will not improve performance very much. More severe is the245

fact that the smallest cell sizes that will occur during mesh adaptation—typically 5 to 50246

times smaller than the original uniform mesh—limit the overall time step. This is a gen-247

eral problem of adaptive mesh methods and could be solved by local time stepping. For248

h-refinement methods this is widely used, and for moving mesh methods the procedure249

is essentially the same and fairly straightforward. Tan et al. [28] have done so and report250

performance improvements by a factor 2 to 3.251

3.3 Adaptive moving mesh method252

The problem domain is discretised as a structured mesh with a fixed number of mesh253

points. The moving mesh algorithm moves the mesh points towards interesting flow254

phenomena, which are time-dependent.255

3.3.1 Background256

The adaptation is represented by a mesh map x(ξξξ), where ξξξ :=[ξ,η]∈Ωc are the reference257

coordinates in the computational domain Ωc :=[0,1]×[0,1].258
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One of the earliest works here is by Winslow [40] in which he generalizes the elliptic259

mesh generator to a solution-adaptive form:260

∇·(D∇ξ)=0, ∇·(D∇η)=0. (3.24)

Here the ‘diffusion’ coefficient D > 0 could depend on the solution gradient. Instead of261

inverting (3.24) to obtain x(ξξξ), Ceniceros and Hou [8] formulate the elliptic generator262

directly in the covariant form:263

∇ξ ·(G∇ξ x)=0, ∇ξ ·(G∇ξy)=0, (3.25)

where∇ξ :=[∂/∂ξ,∂/∂η]T is the computational gradient. Solving these equations directly264

yields the adaptive mesh [x(ξ,η),y(ξ,η)].265

In the above, D and G are still scalar functions (take G = gI), but later work by, e.g.,266

Cao et al. [7] and Tang [31] proposes to make G a symmetric positive definite matrix with267

elements g1,1 6= g2,2
† such that the solution adaptivity becomes directional (comparable268

with anisotropic local mesh refinement). This is also what we do.269

All of the above work except Winslow’s uses an elliptic PDE system that originates270

from a variational formulation of a minimization problem. For example the solution to271

PDE (3.25) is the minimizer of the ‘energy’ functional272

E(x(ξξξ))=
1

2

∫∫

Ωc

[
∇T

ξ G∇ξ x+∇T
ξ G∇ξy

]
dξdη. (3.26)

The moving mesh algorithm aims to find a mesh map with a low energy value. The lower273

the energy, the more appropriate is the mesh map x(ξξξ) according to the monitor function274

G.275

Brackbill and Saltzman [6] were amongst the first to start from a variational formula-276

tion and they combined three functionals to control both mesh smoothness, orthogonality277

and adaptivity. We will only study adaptivity here, since the balanced monitor function278

(4.9) in Section 4 helps keeping the mesh smooth. Still, we do see advantages in orthogo-279

nality monitors in future work.280

3.3.2 Algorithm281

The mesh movement algorithm is similar to the one set out by Tang and Tang [30]. We282

propose a much more versatile and robust monitor function, though, which will be de-283

scribed in Section 4.284

The mesh movement equations (3.25) are solved separately from the physical PDEs285

(3.1). In each iteration step, first the mesh is moved to adapt to the latest solution features.286

Next, the nonuniform mesh is kept fixed during one forward time integration step. We287

omit the time index n in the coordinates and solution values, since it does not change288

during the mesh adaptation step. Algorithm 3.1 summarises it all.289

†Cao et al. [7] even proposes nonzero elements off the diagonal, but we do not consider that here.
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Algorithm 3.1: mmfvsolve – 2D adaptive moving mesh finite volume PDE solver.

1: n←0; t0←0
2: Generate an initial uniform mesh x0

j,k.

3: Compute initial values Q0
j+1/2,k+1/2.

4: while tn <T do

5: ν←0; x
[0]
j,k←xn

j,k; Q
[0]
j+1/2,k+1/2←Qn

j+1/2,k+1/2.
6: repeat

7: Evaluate monitor function (4.9) and filter it (Section 4.5).

8: Move mesh x
[ν]
j,k to x

[ν+1]
j,k , by Gauss-Seidel of (3.27).

9: Conservative interpolation of Q
[ν+1]
j+1/2,k+1/2 by (3.29) (or re-initialize at t= t0).

10: ν←ν+1

11: until ν≥νmax or
∥∥∥x[ν]−x[ν−1]

∥∥∥
rel
≤ǫ

12: Fix new mesh xn←x[ν] and solution Qn←Q[ν].
13: tn+1← tn+∆tn by CFL criterion (3.23).
14: Compute Qn+1 using finite volumes (Section 3.2).
15: xn+1←xn.
16: n←n+1.
17: end while

Mesh adaptation We combine the moving mesh PDEs (3.25) with a directional‡ monitor
function G=diag(ω(1),ω(2)). All gradients are discretised by central differences and the
monitor values on the middle of each edge are averaged between two cell centers. Next,
a Gauss-Seidel step is used to compute the new mesh points:

x
[ν+1]
j,k =




ω
(1)

j− 1
2 ,k

x
[ν+1]
j−1,k +ω

(1)

j+ 1
2 ,k

x
[ν]
j+1,k

(∆ξ)2
+

ω
(2)

j,k− 1
2

x
[ν+1]
j,k−1 +ω

(2)

j,k+ 1
2

x
[ν]
j,k+1

(∆η)2




/(
ω

(1)

j− 1
2 ,k

+ω
(1)

j+ 1
2 ,k

+ω
(2)

j,k− 1
2

+ω
(2)

j,k+ 1
2

)
. (3.27)

Notice how these are in fact two equations: one for x and one for y. The coefficients for290

the two are identical, yet the equations for x and y are independent, i.e., they do not affect291

each other directly. The boundary points can move along the boundary. We do this by292

setting x0,k =xmin, y0,k =y1,k in (3.27) for the left boundary and similar for the other three.293

Conservative solution interpolation The discrete solution values have to be updated294

after the mesh cells have been changed. Conservation of the solution variables (mass,295

energy, etc.) is an important requirement for an accurate compressible flow solver. Well-296

known is the approach by Tang and Tang [30], which considers the velocity of the mesh297

‡See Section 4.4. The direction indices (1), (2) are in superscript here, to avoid confusion with point indices
j,k.
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points as an artificial flux. Han and Tang [13] formulate an alternative geometrical ap-298

proach, which may be slightly more accurate. Both maintain global conservation in the299

following way:300

∑
j,k

∣∣∣A
[ν+1]

j+ 1
2 ,k+ 1

2

∣∣∣Q
[ν+1]

j+ 1
2 ,k+ 1

2

=∑
j,k

∣∣∣A
[ν]

j+ 1
2 ,k+ 1

2

∣∣∣Q
[ν]

j+ 1
2 ,k+ 1

2

.

Zhang [45] devises a new approach based on L2-projection, where solution conservation301

is even preserved in each cell. We employ the first method, though, because of our good302

experiences with it in the past.303

The movement of a cell’s edges causes an artificial flux across them. The difference304

between the old and new mesh points is defined as305

cj,k :=x
[ν]
j,k−x

[ν+1]
j,k . (3.28)

Assuming that this difference is small, the following approximation for the new solution
can be derived:

∣∣∣A
[ν+1]

j+ 1
2 ,k+ 1

2

∣∣∣Q
[ν+1]

j+ 1
2 ,k+ 1

2

=
∣∣∣A

[ν]

j+ 1
2 ,k+ 1

2

∣∣∣Q
[ν]

j+ 1
2 ,k+ 1

2

−
(
(ĉnQ)j+1,k+ 1

2
|hj+1,k+ 1

2
|−(ĉnQ)j,k+ 1

2
|hj,k+ 1

2
|
)

−
(
(ĉnQ)j+ 1

2 ,k+1|hj+ 1
2 ,k+1|−(ĉnQ)j+ 1

2 ,k|hj+ 1
2 ,k|

)
. (3.29)

The numerical fluxes ĉnQ are defined by upwind fluxes306

ĉnQj,k+ 1
2
=(c+

n Q)−
j,k+ 1

2

+(c−n Q)+
j,k+ 1

2

, (3.30)

where the two MUSCL-type solution reconstructions Q− and Q+ are again defined by307

(3.10). The upwind choice is defined by:308

c±n =
cn±|cn|

2
(3.31)

and the artificial advection cn through an edge is simply the inner product of the mid-
point movement with the edge’s right- or upward normal, e.g.,

(cn)j,k+ 1
2
=

cj,k +cj,k+1

2
·nj,k+ 1

2
, (3.32a)

nj,k+ 1
2
=[yj,k+1−yj,k,−(xj,k+1−xj,k)]/‖xj,k+1−xj,k‖. (3.32b)

Degeneracy of the mesh The solution of the mesh PDEs (3.25) is a mesh map x(ξξξ), which
is unique and regular as long as the monitor matrix G is diagonal and strictly positive.
This result is a special case of the proof by Clément et al. [9]. In other words: the mesh
map has a strictly positive Jacobian

J :=det((∇ξx)T),
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v1

v0

x
[ν]

c
x

[ν+1]

Figure 5: Protection against mesh collapse by limiting the mesh velocity vector. The new mesh point (white
circle) should lie in the gray region.

so mesh cells can not collapse in the exact solution.309

The nonlinear mesh PDEs (3.25) are linearized and then solved, though, so nondegen-
eracy can not be guaranteed anymore. Our experience is that with our balanced monitor
function and monitor filtering, this hardly ever occurs. To strictly ensure nondegener-
acy and—even stronger—convexity of cells mesh, the following check can be used while
moving the mesh points. The displacement of a mesh point as defined in (3.28) must
not cross the ’antidiagonal’ of the one (out of four) cells it moves into. Fig. 5 depicts this
requirement. Expanding the displacement vector c in the two edge vectors:

c= a0v0+a1v1,

convexity is maintained as long as a0+a1≤1 holds. To prevent violation of this require-310

ment, the new point location is limited as follows:311

x
[ν+1]∗
j,k :=x

[ν]
j,k +min

{
µ

a0+a1
,1

}
cj,k, with 0<µ≤1, (3.33)

where the parameter µ controls how strict the convexity condition is ensured.312

The mesh adaptation algorithm is now complete. The next section will introduce a313

new monitor function that makes the algorithm very robust.314

4 Monitor functions315

The key to a successful moving mesh method is a proper monitor function. Firstly, it316

should detect the relevant flow features, thereby reducing errors caused by the physical317

flow solver. Secondly, it should be widely applicable, that is, require no or little manual318

fine-tuning for each new problem at hand. Finally, it should be relatively smooth in space319

and time, thereby reducing errors caused by mesh movement.320
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4.1 What makes a good monitor?321

A basic monitor function is quickly defined, but true gain in more complex flow simula-322

tions can only be obtained with a more sophisticated monitor. The arc length based (AL)323

monitor may be intuitive, since it refines the mesh where the solution is steep:324

ω =
√

1+α‖∇q‖2. (4.1)

The assumption of a scalar solution q is for simplicity here and will be extended to vector-325

valued solutions q in Section 4.3. The AL monitor is not balanced, though, more specifi-326

cally it has three main disadvantages:327

• The AL monitor requires the user to properly choose adaptation parameter α,
which is problem dependent and not dimensionless.

• The AL monitor has no time-dependent adaptivity, since α is fixed during
a run. Whenever the solution gradients change significantly over time, the
chosen value for α becomes unsuitable.

• The AL monitor often lacks smoothness, resulting in too rapidly varying cell
sizes.

328

We solve the above problems by several improvements, which will be discussed in329

this and the following sections.330

4.2 An adaptive monitor function331

The disadvantages of the adaptivity parameter α in the AL monitor (4.1) mentioned in332

the previous section, can be summarized as follows: α is not dimensionless, nor scaling333

invariant, nor time-dependent. Beckett and Mackenzie (BM) [3] have proposed an alter-334

native for the AL-monitor: α(q)+‖∇q‖1/m , where the new floor value α(q) is the average335

value of the gradient on the entire domain. The smoothness parameter m replaces the336

square root in (4.1) and controls the importance given to gradient differences (the limit337

m→∞ produces a uniform mesh). We fix it at m = 1 unless specified otherwise. We338

start with an ‘average normalization’ of the solution gradient, which is equivalent to the339

BM-monitor:340

ω(q)=1+
‖∇q‖

1
m

α(q)
, where α(q)=

∫∫

Ω
‖∇q‖

1
m dx, m>0. (4.2)

The next section will generalize this to the case where the solution is a vector q, i.e., as341

in (3.1). We call this an adaptive monitor function for the following reasons. In the above342

monitor the solution gradients have now become dimensionless. There is also a much343

better balance between large and small gradients (ω(q)∈ [1,2]), so the mesh points are344
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spread in a more balanced way. Moreover, the normalization by α(q) is time-dependent,345

since solution q(x,t) itself is time-dependent. Further smoothness is obtained by using346

computational gradients ∇ξ instead of physical gradients ∇. This is also motivated by347

the following [8]. On the reference domain, the solution q̃(ξξξ) := q(x(ξξξ)) should be more348

regular. Hence, a good mesh map should minimize the computational gradient ∇ξ q̃(ξξξ)349

in the functional formulation (3.26).350

The above monitor assigns approximately half of the mesh points to ‘important’ areas351

(see for example [17]). If a solution needs refinement in only a small part of the domain’s352

total area, this may be too much. We include a dimensionless and solution-independent353

parameter β (see (4.3)) that gives the user generic refinement control. All experiments in354

Section 5 use β = 0.3, which means approximately 30% of the mesh points in important355

areas. It is the only essential parameter that the user may choose for a particular problem.356

4.3 Balancing monitor components357

We now generalize the adaptive monitor function to systems of PDEs, i.e., solution vectors358

q(x,t) ∈R
M, where M is the number of solution components. Besides, we allow for359

monitor components other than solution gradients. For now, the generalized monitor360

function is defined as a weighted sum of P nonnegative monitor components φi,p(q):361

ωi(q)=
P

∑
p=1

ωi,p(q)=
P

∑
p=1

[
(1−β)+

β

αi,p(q)
φi,p(q)

]
, i∈{1,2}, (4.3)

with a separate normalization for each monitor component and spatial direction:362

αi,p(q)=max
[∫∫

Ωc

φi,p(q)dξξξ, ǫ
]
. (4.4)

Here, 0<ǫ≪1 prevents division by zero if the component φi,p is zero everywhere on the363

domain. The normalization by αi,p(q) will be reconsidered in Section 4.3.1.364

The default choice for the monitor components is to use all M solution gradients:365

φi,p(q)=

∣∣∣∣
∂qp

∂ξi

∣∣∣∣
1/m

, p=1,··· ,M, i.e., P= M. (4.5)

Other monitor components will be used in Sections 4.3.2 and 5.366

Notice how the monitor values and gradients are subscripted by i. This defines a367

directional monitor function, which will be discussed in Section 4.4.368

4.3.1 Component imbalance369

The adaptive monitor function (4.3) automatically gives proper weight to both steep and370

smooth solution parts. This is per component, though. The function within the sum-371

mation may have very different ranges for the various ωi,p. This is because no standard372
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normalization of components φi,p was done. Instead of divided by the maximum as in (4.6)373

below, the components were divided by the average as in (4.7). We will now elaborate on374

the above.375

Without loss of generality, in the following we set β = 0.5 and consider the monitor
components in one direction (ignore i in (4.3), (4.4), (4.5)). Starting from the AL monitor
(4.1) a possible way of balancing monitor components would be standard normalization
by dividing by the maximum component value:

ωp(q)=1+
φp(q)

maxΩ φp(q)
≡1+

φp(q)

Mp(q)
∈ [1,2]. (4.6)

The disadvantage is that a single very large maximum value Mp(q) will dominate all
other monitor values on the rest of the domain. Instead, the adaptive monitor (4.3) uses
the average value αp(q) for normalization:

ωp(q)=1+
φp(q)∫∫

Ωc
φp(q)dξξξ

≡
αp(q)+φp(q)

αp(q)
∈

[
1,1+

Mp(q)

αp(q)

]
. (4.7)

If one component φp(q) of the P monitor components has a large maximum and rela-
tively small average it will dominate the other components, because of the upper limit of
its range:Mp(q)/αp(q)≫1. This is solved by a second normalization of (4.7):

ωp(q)=
(αp(q)+φp(q))/αp(q)

max
Ω

[(αp(q)+φp(q))/αp(q)]
≡

αp(q)+φp(q)

αp(q)+Mp(q)

∈

[
αp(q)

αp(q)+Mp(q)
,1

]
⊆〈0,1]. (4.8)

This ’average-max’ normalization defines our final form, hereafter called the balanced376

monitor function:377

ωi(q)=
P

∑
p=1

ωi,p(q)=
P

∑
p=1

[
(1−β)αi,p+βφi,p(q)

(1−β)αi,p+βMi,p(q)

]
, i∈{1,2}. (4.9)

There are four important points to note on the above. Firstly, the reason for using normal-378

izations at all is that all components φp(q) are summed. If one component has very large379

values, without normalization the total monitor value ω =∑
P
p=1ωp would be large there380

as well, and all other monitor values on the rest of the domain would have a negligible381

effect on the mesh movement. Secondly, a standard normalization as in (4.6) is balanced382

across components, as the range is always equal to [1,2]. Within one component, though,383

all subtle variations may be diminished by a very large maximum value. We have shown384

the disadvantages of (4.6) in a 1D MHD setting [39] and therefore discard it here. Thirdly,385

for a single component φp(q), variants (4.7) and (4.8) are completely equivalent. The lat-386

ter is obtained by dividing the former by its maximum value and scalar multiplication387
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Figure 6: Solving the imbalance between monitor components in the hd22impdiag example. Left: solution
components at t = 0.4, upper triangular half shows the vorticity, lower half shows the norm of the density
gradient. Middle: mesh detail using the unbalanced monitor function (4.3). Right: mesh detail using the
balanced monitor function (4.9).

of a monitor function has no effect on the mesh refinement. Hence, the new form (4.8)388

is consistent with (4.7) for the case P = 1. Also note that the evaluation of the new form389

is hardly anything more expensive than the old form: only the maximum of all (readily390

known) component values φp needs to be determined and added to the already known391

average. Fourthly, all components ωp are now in better balance with each other, since392

they share the same upper limit of 1. There is no risk of dividing by zero, since this393

minimal value in 〈0,1] is never reached.394

4.3.2 Proof of concept395

The necessity for replacing variant (4.7) is illustrated by the HD22IMPDIAG example prob-396

lem (full specification in Section 5.1). We only include the density gradient and vorticity397

in the monitor summation:398

φi,1(q)=

∣∣∣∣
∂ρ

∂ξi

∣∣∣∣, φi,2(q)=‖∇×v‖, i∈{1,2}. (4.10)

The left diagram in Fig. 6 shows the two monitor components at t = 0.4 together, since399

the solution is symmetric in the diagonal x=y. The density gradient shows several flow400

features, spread throughout the domain. In contrast, the vorticity reveals only one local401

feature in the jet’s head near (0.008,0.04). The ratioM2/α2 for the vorticity will therefore402

be much larger than the ratioM1/α1 for the density gradients.403

The middle diagram in Fig. 6 shows the bottom left part of the domain. The result404

is a bad mesh for the unbalanced monitor variant (4.3): the vorticity attracts the mesh405

too much towards the two rotational points, and the other features receive less attention.406

Also between the two rotational points, unnecessary mesh skewness occurs. The third407

diagram shows how the new monitor variant (4.9) properly balances the two monitor408

components, resulting in a high quality adaptive mesh.409
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Figure 7: Nondirectional (left) and directional (right) mesh adaptation for the hd22conf11 example problem.
Close-up of mesh near (0.53,0.2).

4.4 The importance of directionality410

In two- or higher-dimensional mesh adaptivity a directional—or equivalently: anisotrop-411

ic—monitor function is essential. It attracts mesh points from the direction in which412

a solution feature is observed; points from other directions are more or less unaffected.413

This leads to sharper refinement at points where multiple solution features from different414

directions meet, since there is less competition in attracting points.415

In the mesh PDEs (3.25) the monitor matrix G prescribes the monitor values for all416

directions. Usually a diagonal matrix is used; if the diagonal elements are identical, the417

mesh adaptation is nondirectional (isotropic). We use directional monitor values as in418

(4.9), i.e., the second form below:419

Gnondir =

[
ω 0
0 ω

]
, Gdir =

[
ω1 0
0 ω2

]
. (4.11)

The HD22CONF11 example problem (full specification in Section 5.2) illustrates the420

improved mesh for a directional monitor. Fig. 7 shows the adapted mesh for a nondi-421

rectional monitor (left diagram) and a directional monitor (right diagram). The mesh422

adaptation across the vertical contact discontinuity (CD) is good in both cases. In the423

nondirectional case, however, mesh points have been attracted tangential to the CD as424

well. This is not only unnecessary, it also pulls mesh points away from the area around425

(0.53,0.23) where the CD and the horizontal shock meet. The directional case shows a426

higher quality mesh near all of these features. Also the spirals, e.g., near (0.46,0.35), are427

better captured in this case.428
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4.5 Monitor filtering429

Flow phenomena are now properly captured, but since they generally move, it is sensible
to also refine the mesh in a small region around them. This is done by filtering of the
discrete monitor values. We apply the following widely-used Gaussian filter, typically 2
to 5 times:

ω
(i),filter
j,k :=

1

16

(
4ω

(i)
j,k +2·(ω

(i)
j−1,k+ω

(i)
j+1,k+ω

(i)
j,k−1+ω

(i)
j,k+1)

+ω
(i)
j−1,k−1+ω

(i)
j+1,k−1+ω

(i)
j−1,k+1+ω

(i)
j+1,k+1

)
(4.12)

for i=1 and 2 independently.430

5 Experiments431

5.1 HD22IMPDIAG: a symmetric implosion with jets432

The implosion problem (HD22IMPDIAG) by Hui et al. [19]—also extensively studied by
Liska and Wendroff [22]—describes an initial discontinuity across the line x+y=0.15 on
a domain [0,0.3]×[0,0.3]:

[ρ,u,v,p] = [0.125, 0, 0, 0.14], if x+y≤0.15,
[ρ,u,v,p] = [ 1, 0, 0, 1], otherwise.

Actually, this forms only the first quadrant of the full configuration, but the full solution433

can be obtained by symmetry in both coordinate axes. All boundaries are reflective, i.e.,434

homogeneous Neumann conditions except for the antisymmetric normal velocity com-435

ponent.436

Fig. 8 shows the density evolution over time. Along the diagonal, the initial discon-437

tinuity breaks up into a shock, a contact discontinuity (CD) and a rarefaction fan. The438

shock causes a Mach reflection, and the reflected wave causes a second Mach reflection439

where it meets the CD (see first diagram). Along the axes x=0 and y=0 two jets emanate440

from this CD (see second diagram). This wall-jetting effect has been studied extensively,441

e.g., by Henderson et al. [15]. However, quantitative analysis is very complicated and442

rarely seen. We will study the sharpness of the jet front and its velocity in Section 5.1.3.443

After some time, the two jets meet at the origin and merge into one jet that continues444

to move up the diagonal (see fourth diagram). The evolution of this and following jets445

are often watched to test numerical methods on symmetry preservation. In the meantime446

the shock and its reflections repeatedly interact with these jets and the original CD, caus-447

ing Richtmyer-Meshkov instabilities along the latter. Also, along the interface between448

forward moving jets and the outward expanding surroundings, Kelvin-Helmholtz insta-449

bilities are formed (see third diagram).450

We will first make a comparison between the LLF and HLLC fluxes from Section 3.2.2.451

Next, we will illustrate the monitor component balancing from Section 4.3. Finally, we452

will focus on details of the jets and the formation of instabilities.453
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Figure 8: Time evolution of the hd22impdiag problem. The colors and contours show the density. From top
left, top right, bottom left and bottom right are the snapshots at t=0.05, 0.175, 0.7 and 1.5.
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Figure 9: Non-adaptive local Lax-Friedrichs versus HLLC flux. Close-up of the hd22impdiag problem on a
uniform 250×250 mesh at t=0.45. The colors and contours show the density. HLLC is much less diffusive.



 G
al

le
y 

Pr
oo

fA. van Dam and P. A. Zegeling / Commun. Comput. Phys., x (200x), pp. 1-33 23

5.1.1 Local Lax-Friedrichs and HLLC454

The LLF and HLLC fluxes from Section 3.2.2 are now compared on a uniform (250×250)455

mesh. This will serve as the motivation for the further use of HLLC. Two simulations are456

set up identically except for the numerical flux function: both use van Leer limiting of457

the primitive variables and use a CFL limit of 0.5.458

Fig. 9 shows a close-up of the solution near the origin at t=0.45. In the exact solution,459

the two jets along the axes reach the origin just before t=0.2 already, but the more numer-460

ical viscosity there is, the slower the jets move (See Section 5.1.3). The left diagram shows461

the result for LLF. The jets have formed, but are not sharp at all, just like the CD itself.462

The difference with the right diagram for HLLC is striking. The jets have formed and463

already reached the origin and are now starting to merge onto the diagonal. Not only the464

speed, but also the sharpness of the jet head—and the CD itself—is much sharper.465

The HLLC results are significantly better. The amount of discrete time steps is almost466

identical, and the HLLC flux evaluations increase the total CPU time by a mere 10%.467

Clearly, this is well worth it. Therefore in all following experiments we will use HLLC468

fluxes.469

5.1.2 Balancing monitor components470

The main purpose of this paper is the improved monitoring of flow features. We will now471

consider the ability of three different monitor functions to capture the jets and various472

instabilities. Moreover, we will compare the unbalanced adaptive monitor variant (4.3)473

with the balanced variant (4.9) for each of these three functions.474

We take a look at the bottom jet some time after the shock has hit it for the first time.475

A small trail of the jet was hit rightward but has now curled back up into the jet head476

again, see the top left diagram in Fig. 10. The other five diagrams show the results of477
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N=500, ρ+S monitor, balanced N=250, ρ+vorticity monitor, unbalanced N=250, ρ+S monitor, unbalanced
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N=250, ρ+vorticity monitor, balanced
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x

N=250, ρ+S monitor, balanced

Figure 10: Detail of one of the jets in the hd22impdiag problem. The top left diagram shows a high-resolution
version (N=500, adaptive). The other five show the results for adaptive meshes (N=250) with several choices
of monitor components, unbalanced versus unbalanced, i.e., Eq. 4.7 versus (4.8). The colors and contours
depict density.
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simulations on a 250×250 mesh.478

The first simulation, bottom left diagram, was obtained by simply including all solu-479

tion components in the balanced monitor, i.e., (4.5) and (4.9). The high-density sheet at480

the front of the head is properly captured, but the inner of the head is somewhat diffused.481

The unbalanced variant produced almost identical results, because none of the solution482

components severely dominates the others.483

We try to improve the inner of the jet head by including the vorticity in the monitor,484

combined with density gradients. See also Eq. (4.10) in Section 4.3.2. However, there485

is only large vorticity within the back of the jet head. The mesh in the first diagram486

in Fig. 11 shows the strongly localized refinement in the two points with high vorticity.487

The top middle diagram in Fig. 10 shows how this harms the solution: a strong spiral488

is formed, but the outer of the jet head is not sharp at all. The balanced version in the489

bottom middle diagram performs a lot better: the solution features closely resemble those490

in the top left diagram.491
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Figure 11: Monitor components: vorticity versus entropy gradients. Adaptive mesh details for the hd22impdiag

problem at t=0.15. Left: 250×250, ρ+vorticity monitor, right: 250×250, ρ+S monitor.

The vorticity is now replaced by entropy gradients in the monitor, i.e.,492

φi,1(q)=

∣∣∣∣
∂ρ

∂ξi

∣∣∣∣, φi,2(q)=

∣∣∣∣
∂S

∂ξi

∣∣∣∣, i∈{1,2}. (5.1)

The two rightmost diagrams show the unbalanced and balanced variant, notice how493

they are hardly any different. Compared to the balanced vorticity result, the jet head494

is rounder and still very sharp. Also, the roll-up in its inner and the split-off trail at its495

tail is properly captured. Entropy gradients turn out to be a very good solution monitor.496

This is because it captures both density and pressure fluctuations.497

Fig. 11 illustrates the above observations. The density-vorticity monitor refines mainly498

at the back of the jet head. The mesh adaptation is much better for the density-entropy-499

monitor, which captures all shocks, reflections and rotations. For the unbalanced monitor,500
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the large vorticity dominates the density gradients so much that hardly any adaptation501

occurs outside of the vortices, as was previously shown in Fig. 6.502

In conclusion, firstly the component balancing proved effective for the vorticity mon-503

itor. Even though this was not necessary for the entropy monitor, component balancing504

is always our preferred method, since one can not know in advance whether it is nec-505

essary or not. Besides, as we mentioned before it is hardly anything more expensive.506

Secondly, the vorticity does improve results, although it is still quite localized, the com-507

bination with density is crucial. The entropy gradients proved very effective and will be508

used henceforth.509
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Figure 12: Position of the jet front in the hd22impdiag problem for several numerical methods.

5.1.3 Details of the jet formation510

We now turn to a more quantitative look at the jets. All of our simulations use van Leer511

limiting of the primitive solution variables and HLLC fluxes. Fig. 12 shows the position512

of the jet front over time for several simulations. The bottommost line is a reference513

solution by Athena, an astrophysical gas dynamics code [26], with third-order spatial514

reconstruction and Roe’s Riemann solver on a uniform 1000×1000 mesh. All other lines515

are by our own software. The line just above the Athena line is a uniform 1000×1000 run.516

These runs show that the movement of the jet occurs in two stages: first it forms at the517

CD and starts moving with constant speed −1.17. All simulations agree with this. Then518

at t≈0.85 the shock wave that was reflected at the origin has returned and collides with519

the jets. The jets lose some speed, but still continue towards the origin. The interior of520

the jet heads was already rotating, but after the impact the vorticity values have doubled.521

As a result, the head widens a little because of material that was hit backwards but now522

curls back up again into it.523

The figure shows two more ’groups’ of lines: the first group above the reference lines524

is around the uniform 500×500 run. The second is around the uniform 250×250 run525

(both have dashed lines). Clearly, an increase in numerical viscosity leads to slower jets526
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after the impact. Interestingly, all other waves in the solution maintain correct speed.527

Simulations at various mesh sizes and various amounts of adaptivity have shown this528

up to late in the simulation, e.g., t=2.5.529

The solid lines represent three adaptive runs with density and entropy gradients in530

the monitor. What strikes is that the segments after the impact are indeed somewhat531

steeper than for the uniform runs, but the increase in accuracy is generally less than532

10%. Possibly at the moment of impact a bigger region needs high resolution, now it is533

mainly the shock line and the jet contour that are refined. The N =500 adaptive run with534

increased monitor filtering (10 times) achieves this, but still is only 5% better.535

The adaptive runs do achieve much better sharpness of shocks, CDs, jet heads and536

instabilities, though. Fig. 13 shows the N =500 and N =1000 uniform and adaptive runs537

at t =0.125. The contour lines indicate the sharper CD and jet in the adaptive runs. The538

jet’s front and the rotation in its head in the N = 500 adaptive run are even significantly539

sharper than in the N = 1000 uniform run. The adaptive N = 500 run took 57% more540

CPU time than the N=1000 uniform run. The mesh movement costs in terms of CPU are541

approximately 25%. The significantly smaller time step (due to the small mesh cell sizes542

in (3.23) is the major cause of the increased running time. To get equally accurate results543

with a uniform mesh is not feasible: it would increase the running time by several factors.544

For example, doubling the mesh points in both directions would give an approximately545

eightfold larger CPU time.546

In conclusion, adaptive methods produce sharp results, both for shocks and smaller547

rotations. Concerning jet movement, it turns out that the wall-jetting effect is very sensi-548

tive to numerical errors, as opposed to the shocks, which have an accurate speed. Quanti-549

tative analysis is difficult and rarely seen in other research. Simulations with higher-order550

solvers will have to reveal a truly accurate solution.551

5.1.4 Formation of instabilities552

We conclude with the formation of physical instabilities in this implosion problem. The553

two jets have a ‘negative’ velocity directed towards the origin. In contrast, their sur-554

rounding area is expanding due to the reflected shock. The resulting slip lines (CDs)555

along the two coordinate axes, which form the tails of the jets can develop Kelvin-556

Helmholtz (KH) instabilities over time. Fig. 14 shows these in the small bottom left part557

of the domain at t = 0.5 for simulations by three different packages. We use the Athena558

run on a 1000×1000 mesh with Roe solver and third-order reconstruction as a reference559

solution. Next, we compare our r-refinement with h-refinement in AMRVAC [23,36] for an560

approximately equal amount of mesh cells and identical finite volume solver (HLLC+van561

Leer). The top right diagram shows our moving mesh solver on a 500×500 mesh. The562

smallest mesh cell widths give an effective resolution of approximately 3000×3000. The563

bottom left diagram shows an AMRVAC run with a 100×100 mesh with 4 levels of refine-564

ment, giving an effective resolution of 800×800 and resulting in approximately 300,000565

mesh cells. It is hard to speak of exact solutions in this sensitive case of instability growth,566

but evidently, the higher-order Athena run is considered the most accurate. Notice that567
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Figure 13: Detail of the horizontal jet in the hd22impdiag problem at t=0.125. The two uniform runs (N=500
and N =1000) are both expectedly more diffusive than the N =500 adaptive run.
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Figure 14: Formation of Kelvin-Helmholtz instabil-
ities in the hd22impdiag problem at t=0.5. Top
left diagram: Athena with third-order Roe solver
N = 1000, top right diagram: moving mesh with
HLLC N=500, bottom left diagram: amrvac with
HLLC N = 100 and 4 refinement levels (colors do
not correspond exactly). For Athena, the jet has
already moved beyond the top right corner.
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Figure 15: Moving mesh details (N=500) showing Richtmyer-Meshkov instabilities in the hd22impdiag prob-
lem. Left diagram: t=0.5, right diagram: t=2.25.

the merged jet along the diagonal has already moved beyond the top right corner in the568

Athena run, but this was already discussed in Section 5.1.3. Our adaptive result in the569

middle diagram does show several KH instabilities along both slip lines very similar to570

the Athena solution. Since the jet has not jet crossed the CD, the CD looks different in our571

case. Still, the emergence of four instabilities on the CD is already visible.572

The AMRVAC run has refined approximately 75% of its domain up to the finest level,573

giving maximal detail there. The slip lines show no KH instabilities, apparently the res-574

olution is still too low there. On the CD, though, instabilities have formed since the575

beginning—even earlier than in the Athena run—and have formed big structures. We576

see that qualitatively the same physical phenomena show up in the three simulations,577

but that there is still a big quantitative difference as to how strong and when instabilities578

develop. This is inherent to simulation of instabilities, though. Also, honest comparisons579

between different packages is difficult. Our solver achieves very good refinement (up to580

3000×3000 effective resolution in this example), but lacks local time stepping. AMRVAC581

on the other hand, has efficient time stepping, but can suffer from a very large number of582

mesh points when more refinement levels are allowed.583

When we continue the simulation for an even longer time, the shock and its reflections584

will return from the top right direction and hit the CD repeatedly. This increases the585

vorticity on the CD. At some point, Richtmyer-Meshkov instabilities emerge from this.586

Note that this is a longer term process than the formation of the initial jets. Fig. 15 shows587

two detailed views of the adaptive mesh at an early time t =0.5, i.e., as in Fig. 14, and a588

much later time t=2.25. The mesh details show that both strong, isolated structures and589

widespread, subtle structures are captured by the mesh adaptation, without any change590

of parameters; both diagrams were taken from the same run.591
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5.2 HD22CONF11: A Riemann problem with spirals592

The HD22CONF11 problem is one of the nineteen different Riemann problems classified
by Lax and Liu [21]. It is set on the unit square, and in each quadrant the solution state is
constant:

[ρ,v,p]=





[ 1, 0.1, 0, 1] in the first quadrant,
[ 0.5313, 0.8276, 0, 0.4] in the second quadrant,
[ 0.8, 0.1, 0, 0.4] in the third quadrant,
[ 0.5313, 0.1, 0.7276, 0.4] in the fourth quadrant.

A backward shock will form between quadrant 2 and 1 and between 4 and 1. Between 2593

and 3, and between 3 and 4 a CD will form.594

In Fig. 7 this problem was used to show the effect of a directional monitor function.595

The directionality is crucial to properly represent the two main challenging parts to this596

problem. Firstly, the proper representation of the Mach stem between the CD and the597

shock. Secondly, the proper representation of the spiral at the end of each CD. We refer598

to Section 4.4 for further details.599

5.3 HD22DMR: Double Mach reflection600

The double Mach reflection problem (DMR) by Woodward and Colella [41] is a standard
test problem that consists of a rightward moving Mach 10 shock hitting an inclined floor.
We keep the domain [0,4]×[0,1] horizontal and incline the shock at an angle π/3 with
the reflective bottom wall at x=1/6, which gives the following initial conditions:

[ρ,v,p]post = [ 8, 8.25cos(−π
6 ), 8.25sin(−π

6 ), 116.5],
[ρ,v,p]pre = [1.4, 0, 0, 1].

The initial post-shock, i.e., left state is prescribed by y> tan(π/3)(x−1/6). The left, top601

and bottom boundary for x≤1/6 have Dirichlet conditions with the exact shock solution.602

The bottom boundary for x>1/6 is reflective, and the right boundary has a homogeneous603

Neumann outflow condition.604

Henderson et al. [15] have analyzed the wall-jetting effect that occurs here. The left605

diagram in Fig. 16 shows an interesting part of an adaptive result at t = 0.25. The color606

represents pressure, and the black lines are streamlines of the self-similar flow field. A607

part of the flow has gone through both the initial shock and the reflected shock (i.e.,608

the triangular part that contains, e.g., (3,0.4)). The other part has only gone through the609

Mach stem near x≈3.4. The former part has a higher kinetic energy, resulting in increased610

pressure in the left part of the subdomain shown. This high pressure drives the formation611

of a jet that connects to the slip line (CD), which is the line through (3,0.25) and the triple612

point near (3.4,0.55).613

We performed the adaptive simulation on a 160×80 mesh, again using the balanced614

monitor function with density and entropy components. The right diagram in Fig. 16615
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Figure 16: Left: Pressure detail for the double Mach reflection problem at t=0.25. The black lines are streamlines
of the self-similar velocity field. Right: Adaptive mesh detail for the same problem. Total mesh size is 160×80
and the density-entropy monitor was used.

shows the adapted mesh in the subdomain where the double Mach reflection is present616

at t=0.25. The initial and reflected shocks as well as the CDs and Mach stems are properly617

captured. Moreover, along the jet stream and its head the mesh has also been adapted.618

The vorticity is again not so useful here if we want to attract mesh points to the slip619

line and the jet. This is due to the triple point near (3.4,0.55). The vorticity there is almost620

ten times larger than at the slip line: even with the balanced monitoring this will attract621

little points.622

6 Conclusion623

The main contribution of this work is the introduction of a new balanced monitor function.624

To prevent spurious solution features, the mesh should not be overly distorted, e.g., as625

the unbalanced vorticity monitor in Section 4.3.2 did. The new monitor balancing has626

negligible extra costs, results in robust mesh adaptation, and leaves the user with only627

one intuitive parameter: the relative percentage β of refinement.628

The motive for the new balancing was the inclusion of additional physical quantities629

in the monitor function. Solution variables such as density have proved themselves ca-630

pable of capturing the important discontinuities in many problems. However, the more631

subtle features such as jets and instabilities along contact discontinuities have smaller632

monitor values and hence receive less mesh refinement. The vorticity in flow problems633

adds detail to jets, for example, but still has the problem that it is extremely localized. The634

triple point in the double Mach reflection (DMR) problem (Section 5.3) is a good example635

of this. Entropy is a much more meaningful quantity. In both the DMR and the implosion636

problem (Section 5.1) it adds more resolution to the jets.637

In an earlier state of this work we still used the local Lax-Friedrichs numerical flux,638
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which we now replaced by the HLLC approximate Riemann solver. The tremendous639

improvement in the implosion problem showed that the strength of a solver lies not only640

in adaptivity, but also significantly in the numerical method used.641

Future work could involve the combination of our r-refinement with h-refinement.642

This will improve the resolution of instabilities along contact discontinuities or other643

interfaces. This will require major research effort, though. More feasible improvements644

could be local time stepping, or flux limiters such as the Woodward or Koren limiter.645
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