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A B S T R A C T

This paper introduces a new numerical method for solving space-fractional partial differential
equations (PDEs) on non-uniform adaptive finite difference meshes, considering a fractional
order 𝛼 ∈ (1, 2) in one dimension. The fractional Laplacian in PDE is computed by using
Riemann–Liouville (R–L) derivatives, incorporating a boundary condition of the form 𝑢 = 0
in R∖𝛺. The proposed approach extends the L2 method to non-uniform meshes for cal-
culating the R–L derivatives. The spatial mesh generation employs adaptive moving finite
differences, offering adaptability at each time step through grid reallocation based on previously
calculated solutions. The chosen mesh movement technique, moving mesh PDE-5 (MMPDE-
5), demonstrates rapid and efficient mesh movement. The numerical solutions are obtained
by applying the non-uniform L2 numerical scheme and the MMPDE-5 method for moving
meshes automatically. Two numerical experiments focused on the space-fractional heat equation
validate the convergence of the proposed scheme. The study concludes by exploring patterns in
equations involving the fractional Laplacian term within the Gray–Scott system. It reveals self-
replication, travelling wave, and chaotic patterns, along with two distinct evolution processes
depending on the order 𝛼: from self-replication to standing waves and from travelling waves to
self-replication.

. Introduction

Fractional differential equations garner significant interest in both numerical and theoretical studies due to the enhanced accuracy
f fractional derivatives in describing memory and hereditary properties across various materials [1] and processes [2,3]. One
evelopment in this field is the extension of the Laplacian operator to fractional orders, a concept named after Marcel Riesz,
istinguished for substantial contributions to functional analysis and potential theory [4]. The Riesz fractional Laplacian is commonly
enoted by −(−𝛥)

𝛼
2 , where 𝛼 is the fractional order [5]. In the context of partial differential equations, the Riesz fractional Laplacian

rises in problems involving non-local effects and has applications in areas such as physics, finance, and image processing.
The Riesz fractional Laplacian operator can be viewed as a nonlocal generalization of the integer-order Laplacian. One of the

ifferences between the Riesz fractional Laplacian and the ordinary Laplacian is their behaviour in boundary value problems. For a
unction 𝑢 defined on R, the Riesz fractional Laplacian (also referred to the integral fractional Laplacian [6]) in can be defined via
singular integral

(−𝛥)
𝛼
2 𝑢(𝑥) = 𝐶(1, 𝛼) P.V.∫R

𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦|1+𝛼

𝑑𝑦, 𝛼 ∈ (0, 2), (1)
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where 𝐶(1, 𝛼) =
2𝛼𝛤 ( 1+𝛼2 )
√

𝜋|𝛤 (− 𝛼
2 )|

and P.V. denotes the principal value of the integral. Different from solving a usual diffusion equation

problem, we should note that the domain of (−𝛥)
𝛼
2 consists of functions defined on R, rather than a finite domain 𝛺, i.e. PDEs with

the boundary type 𝑢|𝜕𝛺 = 0 are ill-posed. This issue is addressed by employing the regional Laplacian, which differs from the Riesz
definition, even if 𝑢(𝑥) ≡ 0 for 𝑥 ∈ R∖𝛺, see [5,7,8]. Therefore, a well-posed problem defined on R is given by

⎧

⎪

⎨

⎪

⎩

𝜕𝑢
𝜕𝑡

= −(−𝛥)
𝛼
2 𝑢 + 𝑓 (𝑢, 𝑥, 𝑡), 𝑥 ∈ 𝛺,

𝑢 = 0 in R∖𝛺.
(2)

For simplicity, we use the fractional Laplacian instead of the Riesz fractional Laplacian in subsequent discussions. Normally,
iving a discretized form of the fractional Laplacian operator is difficult since it is complicated to calculate the integral in (2)
irectly. Instead, we use the property that the fractional Laplacian is equivalent to the Riesz potential for smooth functions, and
iesz could be represented as the combination of the left and right side Riemann–Liouville fractional derivatives. Thus, solving

he fractional Laplacian is transformed into making use of the Riemann–Liouville fractional derivative. If we further constrain the
moothness of the integrated function 𝑢 within a open bounded domain 𝛺, it will lead the Riesz–Liouville derivative to degenerate

into a fractional derivative neglecting boundary effects, i.e., the Caputo derivative [5,9]. These will be discussed in Section 2 detailed.
It is known that, for 𝑢 ∈ 𝐶𝑚(�̄�) with order 𝑚 − 1 < 𝛼 < 𝑚, the Riemann–Liouville derivative exists and coincides with the

Grünwald–Letnikov derivative. This relationship between the Riemann–Liouville and Grünwald–Letnikov definitions allows the use
of the Riemann–Liouville definition during the problem formulation, and then the Grünwald–Letnikov definition for obtaining the
numerical solution [3,10], i.e., using a numerical algorithm for the integral part of the Riemann–Liouville derivatives leads to
he Grünwald–Letnikov derivatives. For 1 < 𝛼 < 2, we call this L2 method, which is introduced in Section 3. The L2 method,
ecognized for its efficacy in discretizing Riemann–Liouville derivatives, has been extensively investigated on the uniform meshes
y scholars such as [3,9,11]. While there has been considerable research on the L2 method applied to non-uniform meshes, the
ocus has predominantly centred on the fractional time derivative to overcome the numerical oscillations possibly occur near the
nitial time [12,13]. Similar to spatial cases, for steep and moving solutions of PDEs, uniform L2 method requires a significantly
igh number of mesh points around the abrupt changes of solutions to accurately represent the changes in the solution. To improve
he computational efficiency and accuracy, in this paper, we generalize the L2 method to non-uniform meshes for spatial Riemann–
iouville derivatives of order 1 < 𝛼 < 2 by using a central difference approximation. This approach offers flexibility in mesh
onstruction and different updating techniques for enhanced numerical performance.

After we have constructed the generalized L2 algorithm, in Section 4, we present a mesh generating technique called Moving Mesh
DE (MMPDE). This technique is a widely recognized mesh generation approach extensively explored by researchers like Huang
nd Russell, among others [14–16]. MMPDE operates on the fundamental principle of equidistribution, enabling the automatic
llocation of meshes at each time step. This characteristic distinguishes it from uniform mesh approaches, as it permits a more
recise numerical solution with reduced mesh points across various scenarios, particularly in cases involving solutions of partial
ifferential equations with abrupt discontinuities or steep fronts. In this article, we use MMPDE-5 for mesh adaptation due to its
otable ease of discretization and also adaptability in high-dimensional contexts [17,18]. MMPDE-5 can be regarded as an extended
ersion of the equidistribution principle, contributing to its practicality in a variety of computational settings.

Within this study, our aim is to solve space-fractional PDE problems and apply the numerical method to a specific nonlinear
ractional PDE model: the space-fractional Gray–Scott system. The ordinary (integer-order) Gray–Scott model, a representative
f classical reaction–diffusion models, can create a variety of patterns found in nature, such as spots, spot replication, stripes,
nd travelling waves [19,20]. Its pattern formation has been extensively studied by many researchers [21,22]. In the section on
umerical experiments, we first apply the adaptive L2 (L2-MMPDE-5) algorithm to (2) in two specific models: a fractional heat
quation and a fractional heat equation with a source, and the results show the numerical convergence of the method. Then we
roceed to numerically solve the equations represented by the Gray–Scott system involving the fractional Laplacian term. In these
xperiments, five patterns of the fractional Gray–Scott system are presented: self-replication, travelling waves, periodic solutions,
haotic behaviour, and bifurcations between stable and self-replicating patterns.

. Preliminaries

In this paper we consider the fractional Laplacian as defined via Riemann–Liouville fractional derivatives of order 𝛼 ∈ (1, 2).
Here, we introduce some main definitions of fractional derivatives that we will use. For a open bounded set 𝛺 = (𝑎, 𝑏) or 𝛺 = R,
he Riemann–Liouville fractional derivatives and the Caputo fractional derivatives are defined as follows [23]:

iemann–Liouville fractional derivatives. The left and right Riemann–Liouville derivatives of order 𝛼 > 0 for a function 𝑢(𝑥), 𝑥 ∈ 𝛺
re given by

𝑅𝐿𝐷
𝛼
𝑎,𝑥𝑢(𝑥) =

1
𝛤 (𝑚 − 𝛼)

𝑑𝑚

𝑑𝑥𝑚 ∫

𝑥

𝑎
(𝑥 − 𝑠)𝑚−𝛼−1𝑢(𝑠)𝑑𝑠, (3)

𝑅𝐿𝐷
𝛼
𝑥,𝑏𝑢(𝑥) =

(−1)𝑚

𝛤 (𝑚 − 𝛼)
𝑑𝑚

𝑑𝑥𝑚 ∫

𝑏

𝑥
(𝑠 − 𝑥)𝑚−𝛼−1𝑢(𝑠)𝑑𝑠, (4)

respectively, where 𝑚 − 1 ≤ 𝛼 < 𝑚 with 𝑚 > 0 being an integer.
2
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Caputo fractional derivatives. The left and right Caputo derivatives of order 𝛼 > 0 for a function 𝑢(𝑥), 𝑥 ∈ 𝛺 are given by

𝐶𝐷
𝛼
𝑎,𝑥𝑢(𝑥) =

1
𝛤 (𝑚 − 𝛼) ∫

𝑥

𝑎
(𝑥 − 𝑠)𝑚−𝛼−1𝑢(𝑚)(𝑠)𝑑𝑠, (5)

𝐶𝐷
𝛼
𝑥,𝑏𝑢(𝑥) =

(−1)𝑚

𝛤 (𝑚 − 𝛼) ∫

𝑏

𝑥
(𝑠 − 𝑥)𝑚−𝛼−1𝑢(𝑚)(𝑠)𝑑𝑠, (6)

respectively, where 𝑚 − 1 ≤ 𝛼 < 𝑚 with 𝑚 > 0 being an integer.

Lemma 2.1. Let 𝑥 ∈ �̄�, 𝛼 ∈ R. Then the Riemann–Liouville and Caputo fractional derivatives are related as follows:

𝑅𝐿𝐷
𝛼
𝑎,𝑥𝑢(𝑥) =

𝑚−1
∑

𝑘=0

𝑢(𝑘)(𝑎)(𝑥 − 𝑎)𝑘−𝛼

𝛤 (𝑘 + 1 − 𝛼)
+ 𝐶𝐷

𝛼
𝑎,𝑥𝑢(𝑥), (7)

𝑅𝐿𝐷
𝛼
𝑥,𝑏𝑢(𝑥) =

𝑚−1
∑

𝑘=0

𝑢(𝑘)(𝑏)(𝑏 − 𝑥)𝑘−𝛼

𝛤 (𝑘 + 1 − 𝛼)
+ 𝐶𝐷

𝛼
𝑥,𝑏𝑢(𝑥). (8)

Proof. See [23]. □

Lemma 2.1 shows that for 𝛼 ∈ R, if 𝑢(𝑥) ∈ {𝑢 ∈ 𝐂[𝛼] ∶ 𝑢(𝑘)(𝑥)|𝜕𝛺 = 0, 𝑘 ≤ [𝛼]}, then the left (right) Riemann–Liouville derivative
is equivalent to the left (right) Caputo derivative.

The Riesz derivative. Suppose 𝑢 ∈ 𝐂[𝛼]
𝑏 (R) ∶= {𝑢 ∈ 𝐂𝑘(R) ∶ 𝑑𝑘𝑢

𝑑𝑥𝑘 is continuous and bounded, 𝑘 ≤ [𝛼]} with 𝛼 ∈ (0, 1) ∪ (1, 2). Then, we
have the following relation between the Riesz derivative and the Riemann–Liouville derivatives [4]

𝜕𝛼

𝜕|𝑥|𝛼
𝑢(𝑥) = − 1

2 cos(𝛼𝜋∕2)
(𝑅𝐿𝐷𝛼

𝑎,𝑥 + 𝑅𝐿𝐷
𝛼
𝑥,𝑏)𝑢(𝑥). (9)

Furthermore, if 𝑢 ∈ 𝑆(R) ∶=
{

𝑢 ∈ 𝐶∞(R) ∣ ∀𝑖, 𝑗 ∈ N, sup𝑥∈R
|

|

|

𝑥𝑖(𝑓 (𝑗)(𝑥)||
|

< ∞
}

) with 𝛼 ∈ (0, 1) ∪ (1, 2), the fractional Laplacian −(−𝛥)
𝛼
2

defined in (1) is equivalent to the Riesz derivative: [5,9,23]

− (−𝛥)
𝛼
2 𝑢(𝑥) = 𝜕𝛼

𝜕|𝑥|𝛼
𝑢(𝑥), 𝑥 ∈ R. (10)

heorem 2.2. For a finite domain 𝛺 = (𝑎, 𝑏) and a function 𝑢 ∈ 𝐶 [𝛼]
0 (𝛺) ∶= {𝑢 ∈ 𝐶 [𝛼](𝛺) ∶ 𝑢|R∖𝛺 = 0} with 𝛼 ∈ (0, 1) ∪ (1, 2), the

ollowing equality holds:

−(−𝛥)
𝛼
2 𝑢(𝑥) = − 1

2 cos(𝛼𝜋∕2)
(𝑅𝐿𝐷𝛼

𝑎,𝑥 + 𝑅𝐿𝐷
𝛼
𝑥,𝑏)𝑢(𝑥). (11)

If, furthermore, 𝑑𝑢
𝑑𝑥 vanishes in R∖𝛺, then:

−(−𝛥)
𝛼
2 𝑢(𝑥) = − 1

2 cos(𝛼𝜋∕2)
(𝐶𝐷𝛼

𝑎,𝑥 + 𝐶𝐷
𝛼
𝑥,𝑏)𝑢(𝑥). (12)

Proof . Applying Lemma 2.1 and (9) directly. □

Remark 2.1. Note that if 𝑢 ∈ 𝑆(R) for 𝛼 ↑ 2 and 𝛼 ↓ 0, the fractional Laplacian equals the Riesz derivative and becomes the ordinary
Laplacian operator 𝛥 and 𝑢(𝑥) itself respectively [24,25]:

lim
𝛼↑2

[

−(−𝛥)
𝛼
2 𝑢(𝑥)

]

= 𝛥𝑢(𝑥) and lim
𝛼↓0

[−(−𝛥)
𝛼
2 𝑢(𝑥)] = −𝑢(𝑥).

And for 𝛼 = 1, the fractional Laplacian becomes the Hilbert transform  of the first derivative [26,27]:

−(−𝛥)
1
2 𝑢(𝑥) = −( 𝑑

𝑑𝑥
𝑢(𝑥)).

Based on Theorem 2.2, we construct a numerical scheme: the non-uniform L2 method to discretize the fractional operator (−𝛥
𝛼
2 )

y approximating the Riesz 𝜕𝛼

𝜕|𝑥|𝛼 , making use of approximations for the left (3) and right Riemann–Liouville derivatives (4).

. The L2 method for discretizing the Riesz derivative on non-uniform spatial meshes

In this section, algorithms for implementing integro-differentiation to fractional order 1 < 𝛼 < 2 are discussed and evaluated. The
2 method, recognized for its efficacy in discretizing Riemann–Liouville derivatives, has been extensively investigated on uniform
eshes by scholars such as [3,9–11]. While there has been considerable research on the L2 method applied to non-uniform meshes,

he focus has predominantly centred on the fractional time derivative, as exemplified by studies by [12,13]. Inspired by these three
orks, we generalize the L2 method to non-uniform meshes for spatial Riemann–Liouville derivatives and derive its consistence
rror.
3
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Based on Lemma 2.1, it is evident that the accuracy of the approximations for Riemann–Liouville derivatives fundamentally
epends on the approximations of the Caputo derivatives. As a consequence, we present the L2 non-uniform scheme specifically
ailored for the Caputo derivatives. For a finite domain 𝛺 = (𝑎, 𝑏) and 𝑢 ∈ 𝐂[𝛼]

0 (𝛺), we consider a set of 𝑁 + 1 mesh points, denoted
by {𝑥𝑛}𝑁𝑛=0, forming the 𝛺, where 𝑥0 and 𝑥𝑁 are the boundary points of 𝛺: 𝑥0 = 𝑎, 𝑥𝑁 = 𝑏.

𝐶𝐷
𝛼
𝑎,𝑥𝑢(𝑥𝑛) =

1
𝛤 (2 − 𝛼) ∫

𝑥𝑛

𝑎
(𝑥𝑛 − 𝑠)1−𝛼𝑢′′(𝑠)𝑑𝑠 𝑛 = 1,… , 𝑁 − 1

= 1
𝛤 (2 − 𝛼)

𝑛
∑

𝑘=1
∫

𝑥𝑘

𝑥𝑘−1
(𝑥𝑛 − 𝑠)1−𝛼𝑢′′(𝑠)𝑑𝑠.

Within each subinterval [𝑥𝑘−1, 𝑥𝑘], we employ quadratic interpolation, denote as 𝛱2,𝑘𝑢(𝑥), with the points (𝑥𝑘−1, 𝑢(𝑥𝑘−1)), (𝑥𝑘, 𝑢(𝑥𝑘)),
and (𝑥𝑘+1, 𝑢(𝑥𝑘+1)) to approximate 𝑢(𝑥). Taking second derivatives to 𝛱2,𝑘𝑢(𝑥) gives a central difference approximation to 𝑢′′(𝑥𝑘).
Consequently, the approximation of the left Caputo derivative in 𝛺 is determined by,

𝐶𝐷
𝛼
𝑎,𝑥𝑢(𝑥𝑛) ≈

2
𝛤 (2 − 𝛼)

𝑛
∑

𝑘=1

(

𝑢(𝑥𝑘−1)
ℎ𝑘−1(ℎ𝑘−1 + ℎ𝑘)

−
𝑢(𝑥𝑘)
ℎ𝑘ℎ𝑘−1

+
𝑢(𝑥𝑘+1)

ℎ𝑘(ℎ𝑘 + ℎ𝑘−1)

)

∫

𝑥𝑘

𝑥𝑘−1
(𝑥𝑛 − 𝑠)1−𝛼𝑑𝑠

= 2
𝛤 (3 − 𝛼)

𝑛
∑

𝑘=1

(

𝑢(𝑥𝑘−1)
ℎ𝑘−1(ℎ𝑘−1 + ℎ𝑘)

−
𝑢(𝑥𝑘)
ℎ𝑘ℎ𝑘−1

+
𝑢(𝑥𝑘+1)

ℎ𝑘(ℎ𝑘 + ℎ𝑘−1)

)

(

(𝑥𝑛 − 𝑥𝑘−1)2−𝛼 − (𝑥𝑛 − 𝑥𝑘)2−𝛼
)

, (13)

here the mesh spacings ℎ𝑘 = 𝑥𝑘+1 − 𝑥𝑘, 𝑘 = 0,… , 𝑛 − 1.
Similar for the right Caputo derivative, on each subinterval [𝑥𝑘, 𝑥𝑘+1] we have

𝐶𝐷
𝛼
𝑥,𝑏𝑢(𝑥𝑛) =

1
𝛤 (2 − 𝛼)

𝑁−1
∑

𝑘=𝑛
∫

𝑥𝑘+1

𝑥𝑘
(𝑠 − 𝑥𝑛)1−𝛼𝑢′′(𝑠)𝑑𝑠, 𝑛 = 1,… , 𝑁 − 1

≈ 2
𝛤 (3 − 𝛼)

𝑁−1
∑

𝑘=𝑛

(

𝑢(𝑥𝑘−1)
ℎ𝑘−1(ℎ𝑘−1 + ℎ𝑘)

−
𝑢(𝑥𝑘)
ℎ𝑘ℎ𝑘−1

+
𝑢(𝑥𝑘+1)

ℎ𝑘(ℎ𝑘 + ℎ𝑘−1)

)

(

(𝑥𝑘+1 − 𝑥𝑛)2−𝛼 − (𝑥𝑘 − 𝑥𝑛)2−𝛼
)

, (14)

emark 3.1. Note that as 𝛼 ↑ 2 the generalized L2 method will reduce to the central 3-point approximation for 𝑢′′(𝑥) since only
𝑥𝑛 − 𝑥𝑛−1

)2−𝛼 will exist and approach to 1, same for the right-side Caputo derivative.

Based on the definition for the Riesz derivative representation of the fractional Laplacian in Eqs. (9), we combine the left (13)
nd right (14) derivatives. It gives the non-uniform L2 approximation to the fractional Laplacian in one dimension.

We will apply this scheme with the adaptive moving mesh method described in the next section to obtain a full numerical scheme
or solving space fractional PDEs on adaptive finite difference meshes. To show the method is consistent consider the following
emma.

emma 3.1. For 1 < 𝛼 < 2, and 𝑢 ∈ 𝐶3[𝑎, 𝑏], it holds that

∫

𝑥𝑛

𝑎
(𝑥𝑛 − 𝑠)1−𝛼𝑢′′(𝑠)𝑑𝑠 = 2

𝑛
∑

𝑘=1

(

𝑢(𝑥𝑘−1)
ℎ𝑘−1(ℎ𝑘−1 + ℎ𝑘)

−
𝑢(𝑥𝑘)
ℎ𝑘ℎ𝑘−1

+
𝑢(𝑥𝑘+1)

ℎ𝑘(ℎ𝑘 + ℎ𝑘−1)

)

× ∫

𝑥𝑘

𝑥𝑘−1
(𝑥𝑛 − 𝑠)1−𝛼𝑑𝑠 + 𝑅𝑛, 1 ≤ 𝑛 ≤ 𝑁 − 1 (15)

ith

|𝑅𝐿,𝑛| ≤
𝑢′′′𝑀

3(2 − 𝛼)

(

ℎ2𝑀
ℎ𝑚

(

(𝑥𝑛 − 𝑎)2−𝛼 − ℎ2−𝛼𝑛−1
)

+
ℎ2𝑛−1 + ℎ2𝑛
ℎ𝑛−1 + ℎ𝑛

ℎ2−𝛼𝑛−1

)

where 𝑢′′′𝑀 = max𝑎≤𝑥≤𝑥𝑛
|

|

𝑢′′′(𝑥)|
|

and ℎ𝑀 = max0≤𝑘≤𝑛−1 ℎ𝑘−1, ℎ𝑚 = min0≤𝑘≤𝑛−1 ℎ𝑘−1.

Proof . We first use 𝛱2,𝑘𝑢 to approximate 𝑢 on each interval [𝑥𝑘, 𝑥𝑘+1], where

𝛱2,𝑘𝑢(𝑥) = 𝑢(𝑥𝑘−1)
(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘+1)
ℎ𝑘−1(ℎ𝑘−1 + ℎ𝑘)

+ 𝑢(𝑥𝑘)
(𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘+1)

−ℎ𝑘−1ℎ𝑘
+ 𝑢(𝑥𝑘+1)

(𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘)
ℎ𝑘(ℎ𝑘−1 + ℎ𝑘)

s the quadratic interpolation of 𝑢(𝑥) using three points (𝑥𝑘−1, 𝑢(𝑥𝑘−1)), (𝑥𝑘, 𝑢(𝑥𝑘)) and (𝑥𝑘+1, 𝑢(𝑥𝑘+1)). And the second derivative of
2,𝑘𝑢(𝑠) is given by

(𝛱2,𝑘𝑢(𝑠))′′ = 2
(

𝑢(𝑥𝑘−1)
ℎ (ℎ + ℎ )

−
𝑢(𝑥𝑘)
ℎ ℎ

+
𝑢(𝑥𝑘+1)

ℎ (ℎ + ℎ )

)

,

4

𝑘−1 𝑘−1 𝑘 𝑘 𝑘−1 𝑘 𝑘 𝑘−1
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which actually is the central finite difference of the 𝑢′′(𝑥𝑘) on (𝑥𝑘−1, 𝑥𝑘+1). Therefore, the truncation error 𝑅𝐿(𝑘) can be estimated
by

|𝑅𝐿(𝑘)| =
|

|

|

|

|

𝑢′′(𝑥𝑘) − 2
(

𝑢(𝑥𝑘−1)
ℎ𝑘−1(ℎ𝑘−1 + ℎ𝑘)

−
𝑢(𝑥𝑘)
ℎ𝑘ℎ𝑘−1

+
𝑢(𝑥𝑘+1)

ℎ𝑘(ℎ𝑘 + ℎ𝑘−1)

)

|

|

|

|

|

= 1
3

|

|

|

|

|

|

ℎ2𝑘−1
ℎ𝑘−1 + ℎ𝑘

𝑢′′′(𝜉1) −
ℎ2𝑘

ℎ𝑘−1 + ℎ𝑘
𝑢′′′(𝜉2)

|

|

|

|

|

|

, 𝜉1 ∈ (𝑥𝑘−1, 𝑥𝑘), 𝜉2 ∈ (𝑥𝑘, 𝑥𝑘+1). (16)

ow we analyse the error bounds on the interval [𝑎, 𝑥𝑛]. Write the integral as

∫

𝑥𝑛

𝑎
(𝑥𝑛 − 𝑠)1−𝛼𝑢′′(𝑠)𝑑𝑠 = ∫

𝑥𝑛−1

𝑎
(𝑥𝑛 − 𝑠)1−𝛼𝑢′′(𝑠)𝑑𝑠 + ∫

𝑥𝑛

𝑥𝑛−1
(𝑥𝑛 − 𝑠)1−𝛼𝑢′′(𝑠)𝑑𝑠

or the first integral on the right side we have

∫

𝑥𝑛−1

𝑎
(𝑥𝑛 − 𝑠)1−𝛼𝑢′′(𝑠)𝑑𝑠 =

𝑛−1
∑

𝑘=1
∫

𝑥𝑘

𝑥𝑘−1
(𝑥𝑛 − 𝑠)1−𝛼𝑢′′(𝑠)𝑑𝑠

=
𝑛−1
∑

𝑘=1
(𝛱2,𝑘𝑢(𝑠))′′ ∫

𝑥𝑘

𝑥𝑘−1
(𝑥𝑛 − 𝑠)1−𝛼𝑑𝑠 + 𝑅𝐿,𝑛−1,

then it gives

|𝑅𝐿,𝑛−1| =
|

|

|

|

|

|

𝑛−1
∑

𝑘=1
𝑅𝐿(𝑘)∫

𝑥𝑘

𝑥𝑘−1
(𝑥𝑛 − 𝑠)1−𝛼𝑑𝑠

|

|

|

|

|

|

≤
𝑛−1
∑

𝑘=1
|𝑅𝐿(𝑘)|∫

𝑥𝑘

𝑥𝑘−1
(𝑥𝑛 − 𝑠)1−𝛼𝑑𝑠

≤ 1
3

(

max
𝑎≤𝑥≤𝑥𝑛

|𝑢′′′(𝑥)|
max0≤𝑖≤𝑛−1 ℎ2𝑖
min0≤𝑖≤𝑛−1 ℎ𝑖

)

∫

𝑥𝑛−1

𝑎
(𝑥𝑛 − 𝑠)1−𝛼𝑑𝑠

= 1
3(2 − 𝛼)

(

max
𝑎≤𝑥≤𝑥𝑛

|𝑢′′′(𝑥)|
max0≤𝑖≤𝑛−1 ℎ2𝑖
min0≤𝑖≤𝑛−1 ℎ𝑖

)

(

(𝑥𝑛 − 𝑎)2−𝛼 − ℎ2−𝛼𝑛−1
)

Similarly, for 𝑅𝐿(𝑛) we have

|𝑅𝐿(𝑛)| ≤ max
𝑥𝑛−1≤𝑥≤𝑥𝑛+1

|𝑢′′′(𝑥)|∫

𝑥𝑛

𝑥𝑛−1
(𝑥𝑛 − 𝑠)1−𝛼𝑢′′(𝑠)𝑑𝑠

= 1
3(2 − 𝛼)

(

max
𝑥𝑛−1≤𝑥≤𝑥𝑛+1

|𝑢′′′(𝑥)|
ℎ2𝑛−1 + ℎ2𝑛
ℎ𝑛−1 + ℎ𝑛

)

ℎ2−𝛼𝑛−1 .

s the |𝑅𝐿,𝑛| is bounded by |𝑅𝐿,𝑛−1| + |𝑅𝐿(𝑛)|, this yields the results. □

By using similar analysis for the right-side,

∫

𝑏

𝑥𝑛
(𝑠 − 𝑥𝑛)1−𝛼𝑢′′(𝑠)𝑑𝑠 = 2

𝑁−1
∑

𝑘=𝑛

(

𝑢(𝑥𝑘−1)
ℎ𝑘−1(ℎ𝑘 + ℎ𝑘−1)

−
𝑢(𝑥𝑘)
ℎ𝑘−1ℎ𝑘

+
𝑢(𝑥𝑘+1)

ℎ𝑘(ℎ𝑘 + ℎ𝑘−1)

)

× ∫

𝑥𝑘+1

𝑥𝑘
(𝑠 − 𝑥𝑛)1−𝛼𝑑𝑠 + 𝑅𝑅,𝑛, 1 ≤ 𝑛 ≤ 𝑁 − 1 (17)

t gives

|𝑅𝑅,𝑛| ≤
𝑢′′′𝑀

3(2 − 𝛼)

(

ℎ2𝑀
ℎ𝑚

(

(𝑏 − 𝑥𝑛)2−𝛼 − ℎ2−𝛼𝑛
)

+
ℎ2𝑛−1 + ℎ2𝑛
ℎ𝑛−1 + ℎ𝑛

)

ℎ2−𝛼𝑛 ,

where 𝑢′′′𝑀 = max𝑥𝑛≤𝑥≤𝑏
|

|

𝑢′′′(𝑥)|
|

and ℎ𝑀 = max𝑛+1≤𝑘≤𝑁−1 ℎ𝑘−1, ℎ𝑚 = min𝑛+1≤𝑘≤𝑁−1 ℎ𝑘−1.

Remark 3.2. If there exists a finite constant ℎ such that max0≤𝑘≤𝑁−1 ℎ𝑘−1
min0≤𝑘≤𝑁−1 ℎ𝑘−1

≤ ℎ, then the sequence of meshes is referred to as
quasi-uniform. For ℎ = 1, it holds that ℎ𝑛 = ℎ = 𝑏−𝑎

𝑁 for all 𝑛 = 1,… , 𝑁 − 1, then 𝑅𝐿(𝑘) in (16) is bounded by

|𝑅𝐿(𝑘)| ≤
ℎ2

3
max

𝑥𝑘−1≤𝑥≤𝑥𝑘+1
|𝑢′′′′(𝑥)|,

and the left-side error

|𝑅𝐿,𝑛| ≤ |𝑅𝐿,𝑛−1| + |𝑅𝐿(𝑛)| (18)

≤ ℎ2 max |𝑢′′′′(𝑥)|
𝑥𝑛−1

(𝑥𝑛 − 𝑠)1−𝛼𝑑𝑠 + ℎ3−𝛼 max |𝑢′′′(𝑥)|
5

3 𝑎≤𝑥≤𝑥𝑛 ∫𝑎 3(2 − 𝛼) 𝑥𝑛−1≤𝑥≤𝑥𝑛+1
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≤ ℎ2

3
max

𝑎≤𝑥≤𝑥𝑛
|𝑢′′′′(𝑥)|(𝑎 − 𝑥𝑛−1)ℎ1−𝛼𝑛−1 +

ℎ3−𝛼

3(2 − 𝛼)
max
𝑥𝑛−1

𝑢′′′(𝑥) (19)

≤ ℎ3−𝛼

3

(

max
𝑎≤𝑥≤𝑥𝑛

|𝑢′′′′(𝑥)|(𝑎 − 𝑥𝑛−1) +
max𝑥𝑛−1≤𝑥≤𝑥𝑛+1 |𝑢

′′′(𝑥)|

2 − 𝛼

)

.

Similar analysis can be done for the right-side errors. Thus we conclude that (15) and (17) reduce to a uniform finite difference
method with the truncation order 𝑂(ℎ3−𝛼) [11].

For simplicity, we write (13) and (14) into the computational format (which has been used in the codes). For a left-side Caputo
derivative, we denote

𝐴𝐿(𝑖, 𝑗) = (𝑥𝑖 − 𝑥𝑗−1)2−𝛼 − (𝑥𝑖 − 𝑥𝑗 )2−𝛼 , 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁 − 1,

𝐻(𝑖, 𝑗) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
ℎ𝑖−1(ℎ𝑖−1 + ℎ𝑖)

, 𝑗 = 𝑖,

− 1
ℎ𝑖ℎ𝑖−1

, 𝑗 = 𝑖 + 1,

1
ℎ𝑖(ℎ𝑖−1 + ℎ𝑖)

, 𝑗 = 𝑖 + 2,

with 1 ≤ 𝑖 ≤ 𝑁 − 1,

therefore, (13) can be represented as

𝐶𝐷
𝛼
𝑎,𝑥𝑈

⊺ = 2
𝛤 (3 − 𝛼)

(𝐴𝐿𝐻�̄� ⊺ + 𝑅𝐿), (20)

here 𝑈 = [𝑢1,… , 𝑢𝑁−1], �̄� = [𝑢0, 𝑈 , 𝑢𝑁 ] and 𝑅𝐿 = [𝑅𝐿,1,… , 𝑅𝐿,𝑁−1]. Similar for the right-side Caputo derivative, denoting that

𝐴𝑅(𝑖, 𝑗) = (𝑥𝑗+1 − 𝑥𝑖)1−𝛼 − (𝑥𝑗 − 𝑥𝑖)2−𝛼 , 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁 − 1,

hen (14) is represented as

𝐶𝐷
𝛼
𝑥,𝑏𝑈

⊺ = 2
𝛤 (3 − 𝛼)

(𝐴𝑅𝐻�̄� ⊺ + 𝑅𝑅), (21)

where 𝑅𝑅 = [𝑅𝑅,1,… , 𝑅𝑅,𝑁−1]. The results of Lemma 3.1 prove the following Theorem which shows the consistency of the
generalized L2 method.

Theorem 3.2. For 1 < 𝛼 < 2, and 𝑢 ∈ 𝐶3[𝑎, 𝑏], it holds that

𝐶𝐷
𝛼
𝑎,𝑥𝑢(𝑥𝑛) + 𝐶𝐷

𝛼
𝑥,𝑏𝑢(𝑥𝑛) =

2
𝛤 (3 − 𝛼)

[
(

𝐴𝐿𝐻 + 𝐴𝑅𝐻
)

�̄� ⊺]𝑛 + 𝑅𝑛, (22)

where [⋅]𝑛 denotes its 𝑛−th entry and 𝑅 is the truncation error with |𝑅𝑛| ≤
2

𝛤 (3−𝛼) (|𝑅𝐿,𝑛| + |𝑅𝑅,𝑛|).

4. The adaptive moving mesh method

Different from constructing the uniform mesh, the non-uniform mesh is designed to adapt as time progresses. In this paper, adap-
tivity is determined through the concept of equidistribution, ensuring that the mesh dynamically moves to achieve equidistribution
at each time step. This approach involves solving a mesh movement equation, represented as 𝑥(𝑡), derived from the equidistribution
rinciple, commonly referred to as the adaptive moving method. This procedure is designed to allocate the mesh points in such a
ay that distances between them are smaller in regions where the target function 𝑢(𝑥) have a sudden change, and the distances
re larger in regions where 𝑢(𝑥) changes mildly at each time-step. The monitor function 𝑀(𝑥) is introduced to quantify the extent of

change in 𝑢(𝑥).
The equidistribution principle, proposed by De Boor in 1973 [28], suggests selecting mesh points in a way that equalizes some

measure of the solution error over each subinterval. In practice, an effective approach involves choosing a function 𝑀(𝑥) that
connects the mesh and the physical solution 𝑢(𝑥) such that

∫

𝑎

𝑥
𝑀(𝑥)𝑑𝑥 = 𝜉 ∫

𝑏

𝑎
𝑀(𝑥)𝑑𝑥, (23)

where the physical domain 𝑥 is a coordinate transformation of the logical domain 𝜉, i.e., 𝑥 = 𝑥(𝜉, 𝑡) ∶ [0, 1] × [0, 𝑇 ] → [𝑎, 𝑏] × [0, 𝑇 ].
The differential form of (23) is given by

𝜕
𝜕𝜉

(

𝑀 𝜕𝑥
𝜕𝜉

)

= 0, (24)

which is the Euler–Lagrange equation of the functional

𝐼[𝑥] = 1 1 (

𝑀 𝜕𝑥
)2

𝑑𝜉. (25)
6

2 ∫0 𝜕𝜉
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4.1. The moving mesh PDE approach

A mesh equation involving mesh speed is referred to as a moving mesh PDE (MMPDE). There are numerous ways of formulating
MPDEs [14,29]. Here we use a idea that the fastest descent direction of 𝐼[𝑥] of (25) in the function space is the opposite direction

f the first order functional derivative 𝛿𝐼
𝛿𝑥 . Thus, we define the gradient flow equation

𝜕𝑥
𝜕𝑡

= −𝑃
𝜏
𝛿𝐼
𝛿𝑥

, (26)

which defines a flow which converges to the equilibrium state as 𝑡 → ∞, 𝑃 is a positive function to be chosen such that the MMPDE
has some desired properties and 𝜏 is a positive constant, see [17].

By substituting (25) and set 𝑃 = 1
𝑀(𝑥) such that the second-order derivatives change evenly over the domain (so that the MMPDE

behaves more like a diffusion equation with an almost constant diffusion coefficient), we derived this so-called MMPDE-5 that will
be utilized to move the mesh

𝜕𝑥
𝜕𝑡

= 1
𝜏

𝜕
𝜕𝜉

(

𝑀 𝜕𝑥
𝜕𝜉

)

, (27)

𝑥(0, 𝑡) = 𝑎, 𝑥(1, 𝑡) = 𝑏, (28)

where 𝜏 is a positive parameter for adjusting the response time of mesh movement to changes in monitor function. The smaller
of 𝜏 chosen, the faster mesh move towards the equidistribution rule. Since 1

𝜏

(

𝑀𝑥𝜉
)

𝜉 plays the role of a driving force for mesh
movement and provides the mechanism to pull the mesh back towards equidistribution of the monitor function 𝑀 when it drifts
away from equidistribution. If 𝑥 = 𝑥(𝜉, 𝑡) is an invertible coordinate transformation, and furthermore, the monitor function 𝑀 and
its time derivative 𝑀𝑡 are both bounded, then it is proved in [15] that 𝑥(𝜉, 𝑡) stays of the order 𝑂(𝜏) close to the minimizer of the
functional (25)𝑥∗(𝜉, 𝑡) as 𝑡 → ∞ in the 𝐿2 sense.

4.2. Monitor functions

The selection of an appropriate monitor function is pivotal to the success of mesh equidistribution in the adaptive numerical
solution of differential equations. Typically, the motivation for selecting the monitor function 𝑀(𝑥) is the desire to minimize an
error in interpolating a function or in solving a differential equation, as extensively discussed in [15]. In this paper, we primarily
employ a so-called optimal monitor function denoted as 𝑀 , which is given by,

𝑀 =
(

1 + 1
𝛾
|

|

|

|

𝜕𝑢
𝜕𝑥

|

|

|

|

2)
1
3

and 𝛾 =

[

1
𝑏 − 𝑎 ∫

𝑏

𝑎

( 𝜕𝑢
𝜕𝑥

)

2
3 𝑑𝑥

]3

, (29)

or 𝑢 in the Hilbert space 𝐻2(𝑎, 𝑏). The choice of 𝛾 is following two criteria [15,18,30]; (i) ensure that the monitor function defined
n (29) is invariant under a scaling transformation of 𝑢; (ii) for a given mesh ℐℎ ∶ 𝑥0 = 𝑎 < 𝑥2 < ⋯ < 𝑥𝑁 = 𝑏 on [𝑎, 𝑏], ensure that
∑

𝑖(𝑥𝑖+1 − 𝑥𝑖)𝑀𝑖 ≤ 2(𝑏 − 𝑎). More monitor functions and the derivation of corresponding error bounds can be found in [15].

Smoothing of the monitor functions. The smoothing technique is motivated by the robust moving mesh method of Dori and Drury [16]
that is used for those not smooth solutions 𝑢, which leads the discrete monitor function computed to change abruptly, slowing down
the computation unnecessarily. Direct smoothing of the monitor function is commonly based on the use of an elliptic differential
operator (especially the Laplace operator) or an approximation to it. For a given 𝑀(𝑥(𝜉)), a monitor function having higher regularity
or a smoother monitor function, �̂� , can be obtained as the solution of the boundary value problem,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝐼 − 𝛽−2 𝑑2

𝑑𝜉2
)�̂� = 𝑀,∀𝜉 ∈ (0, 1),

𝑑�̂�
𝑑𝜉

(0) = 𝑑�̂�
𝑑𝜉

(1) = 0,
(30)

where 𝛽 is positive constant. If we substitute (30) into (24), then it centred discretized form can be verified that it is exactly the
one used in [16] by letting 𝜎 = 𝑁2

𝛽2
and choosing the parameter 𝛽 such that 𝜎 = −�̂�(1 + �̂�), where �̂� is the measure of the grid’s

rigidity in [16] and also the spacing grid smoothing parameter 𝜅 in [31]. The smoothing defined by (30) is global in the sense that
differential equation must be solved for �̂� . In this paper, we derive a local smoothing schemes for efficiency by using the Taylor

xpansion to (30),

�̂� =
(

𝐼 − 𝛽−2 𝑑2

𝑑𝜉2

)−1
𝑀 =

[

𝐼 +
(

𝛽−2 𝑑2

𝑑𝜉2

)

+
(

𝛽−2 𝑑2

𝑑𝜉2

)2
+⋯

]

𝑀,

for 𝛽 ≫ 1. Truncating the expansion and approximating 𝑑2

𝑑𝜉2
with a central finite difference we obtain

�̂�𝑖 =
1 𝑀𝑖+1 +

(

1 − 2
)

𝑀𝑖 + 1 𝑀𝑖−1, 𝑖 = 2,… , 𝑁 − 1. (31)
7

𝛽2𝛥𝜉2 𝛽2𝛥𝜉2 𝛽2𝛥𝜉2
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If 𝛽2𝛥𝜉2 = 4, it is called weighted averaging or filtering, that is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̂�1 =
𝑀1 +𝑀2

2
,

�̂�𝑖 =
1
4
𝑀𝑖+1 +

1
2
𝑀𝑖 +

1
4
𝑀𝑖−1, 𝑖 = 2,… , 𝑁 − 1,

�̂�𝑁 =
𝑀𝑁−1 +𝑀𝑁

2
.

(32)

This could give a smoother non-uniform mesh, making the MMPDE easier to integrate numerically, smoothing of the monitor
function is a typical procedure in the context of moving mesh technologies [15].

5. The coupled semi-discrete ODE system

Following the moving mesh PDE as the mesh updating approach, the target equation is transformed from the physical domain
to the computational domain using the coordinate transformation (27)–(28) and the chain rule, as follows:

𝜕�̃�
𝜕𝜉

= 𝜕𝑢
𝜕𝑥

𝜕𝑥
𝜕𝜉

, 𝜕�̃�
𝜕𝑡

= 𝜕𝑢
𝜕𝑡

+ 𝜕𝑢
𝜕𝑥

𝜕𝑥
𝜕𝑡

.

Hence, in the new coordinates (𝜉, 𝑡) Eq. (2) becomes

𝜕�̃�
𝜕𝑡

= −𝜖(−𝛥)
𝛼
2 �̃� + 𝑓 (�̃�, 𝑥, 𝑡) +

𝜕�̃�
𝜕𝜉
𝜕𝑥
𝜕𝜉

𝜕𝑥
𝜕𝑡

, (33)

here 𝜕𝑥
𝜕𝑡 is derived from (27)–(28) that determines the mesh speed. Now we combine this mesh generation with the non-uniform

L2 scheme (22), giving the numerical scheme for (33). Applying the Method of Lines with central discretization in space to the
MMPDE-5 (27)–(28) yields:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑈𝑛
𝑑𝑡

= − 1
𝛤 (3 − 𝛼) cos(𝜋𝛼∕2)

[
(

𝐴𝐿𝐻 + 𝐴𝑅𝐻
)

�̄� ⊺]𝑛 +
𝑈𝑛+1 − 𝑈𝑛
𝑋𝑛+1 −𝑋𝑛

𝑑𝑋𝑛
𝑑𝑡

+ (2 − 𝛼)
(

𝑈1 − 𝑈0
𝑋1 −𝑋0

(𝑥 − 𝑎)1−𝛼 +
𝑈𝑁 − 𝑈𝑁−1
𝑋𝑁 −𝑋𝑁−1

(𝑏 − 𝑥)1−𝛼
)

+ 𝑓 (𝑈𝑛, 𝑋𝑛, 𝑡),

𝑑𝑋𝑛
𝑑𝑡

=1
𝜏

(

𝑋𝑛+1 −𝑋𝑛

(𝛥𝜉)2
�̂�𝑛+1 + �̂�𝑛

2
−

𝑋𝑛 −𝑋𝑛−1

(𝛥𝜉)2
�̂�𝑛 + �̂�𝑛−1

2

)

,

�̂�𝑛 =
1
4
𝑀𝑛+1 +

1
2
𝑀𝑛 +

1
4
𝑀𝑛−1, 𝑛 = 2,… , 𝑁 − 1,

(34)

with boundary conditions

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑈0 = 𝑢(𝑎), 𝑈𝑁 = 𝑢(𝑏),

𝑋0 = 𝑎, 𝑋𝑁 = 𝑏,

�̂�1 =
𝑀1 +𝑀2

2
, �̂�𝑁 =

𝑀𝑁−1 +𝑀𝑁
2

.

(35)

f we compute �̂� in (34) individually and let z = [𝑈1,… , 𝑈𝑁−1, 𝑋1,… , 𝑋𝑁−1], then the other two equations in (34) can be expressed
n an fully implicit form

𝛷(𝑑z
𝑑𝑡

, z, 𝑡) = 0. (36)

6. Numerical experiments

Default settings and values of parameters. The above fully implicit ODE system (36) with conditions (35) is solved using the implicit
ODE solver ode15i (see [32]), where �̂� is not involved and calculated at each time step individually. The method of time
integration is chosen as the backward differentiation formulas (BDF) with chord iteration (mr25), for which an approximate Jacobian
is computed by ode15iinternally using finite differences. The default values of the parameters for time integration in ode15i are
used, except for the local time-stepping error tolerances reltol and abstol. Throughout, we use

𝚛𝚎𝚕𝚝𝚘𝚕 = 𝟷𝚎 − 𝟺, 𝚊𝚋𝚜𝚝𝚘𝚕 = 𝟷𝚎 − 𝟼,

nless otherwise stated.
When 𝑥𝑖(𝑡)−𝑥𝑘−1(𝑡) ≈ 𝑥𝑖(𝑡)−𝑥𝑘(𝑡), the evaluation of, (𝑥𝑖(𝑡)−𝑥𝑘−1(𝑡))2−𝛼−(𝑥𝑖(𝑡)−𝑥𝑘(𝑡))2−𝛼 , is the difference of two nearly equal vectors

which leads to noticeable round-off errors. The following simple reformulation using expm1(𝑥) = exp(𝑥)−1 and log1p(𝑥) = log(1+𝑥)
mmediately rectifies this instability [33]. For 𝑥𝑖 ≤ 𝑥𝑘, we have

(𝑥 (𝑡) − 𝑥 (𝑡))2−𝛼 − (𝑥 (𝑡) − 𝑥 (𝑡))2−𝛼 ,
8

𝑖 𝑘−1 𝑖 𝑘
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Fig. 1. (a) The numerical solutions of the fractional heat Eq. (38) over 160-moving mesh with 𝛼 = 1.1, 1.3, 1.5, 1.8, 2 at 𝑇 = 5. (b) The mesh movement over a
160-moving mesh for 𝛼 = 1.8 at 𝑇 = 5.

Fig. 2. The local (left) and global (right) quasi-uniformity of the meshes using the adaptive L2 method for (38) are estimated with different values of
𝛼 = 1.1, 1.3, 1.5, 1.8 at 𝑇 = 5.

=(𝑥𝑖(𝑡) − 𝑥𝑘−1(𝑡))2−𝛼
(

1 − exp

(

log

(

(

𝑥𝑖(𝑡) − 𝑥𝑘(𝑡)
𝑥𝑖(𝑡) − 𝑥𝑘−1(𝑡)

)2−𝛼
)))

,

= − (𝑥𝑖(𝑡) − 𝑥𝑘−1(𝑡))2−𝛼expm1
[

(2 − 𝛼)log1p
(

𝑥𝑘−1(𝑡) − 𝑥𝑘(𝑡)
𝑥𝑖(𝑡) − 𝑥𝑘−1(𝑡)

)]

.

In order to produce consistent and reasonable meshes, it is natural that we examine the quality of the smoothed equidistribution
mesh at a given time, 𝑡, we use the local quasi uniformity, which are evaluated by the following expressions

𝐿(𝑡) = max
{

ℎ𝑖(𝑡)
ℎ𝑖−1(𝑡)

,
ℎ𝑖−1(𝑡)
ℎ𝑖(𝑡)

}

, 𝐺(𝑡) =
maxℎ𝑖(𝑡)
minℎ𝑖(𝑡)

, 𝑖 = 1,… , 𝑁. (37)

We expect that 𝐺(𝑡) is bounded, i.e. the meshes used in simulations are quasi-uniform. For a mesh satisfying 𝐿(𝑡) → 1, which is
considered locally quasi-uniform, such meshes typically result in an approximation error of the same asymptotic order as a uniform
mesh, see [15,34,35].
9
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Fig. 3. The relative error 𝑒𝑟 of (38) using the L2 method estimated on uniform (blue) and adaptive (red) meshes in the 𝑙∞-norm for 𝛼 = 1.5 at 𝑇 = 5.

Fig. 4. The numerical solutions and the corresponding mesh movement of (41)–(44) and on a 160-moving mesh for 𝛼 = 1.1, 1.5, 1.8 at 𝑇 = 1.

6.1. The space-fractional heat equation

Firstly, we consider the space-fractional heat equation

⎧

⎪

⎨

⎪

⎩

𝜕𝑢
𝜕𝑡

= −𝜖(−𝛥)
𝛼
2 𝑢 (𝑥, 𝑡) ∈ (0, 1) × [0, 𝑇 ],

𝑢 = 0 on R∖(0, 1),
(38)

where 𝜖 is the diffusion coefficient. The initial condition is given by

𝑢(𝑥, 0) = 𝑔(𝑥). (39)

In this case, we take 𝜖 = 10−3 and 𝑔(𝑥) = 𝑒−100(𝑥−
1
2 )

2
on R. From [9], we have the analytical solution of (38):

𝑢(𝑥, 𝑡) =
∞
∑

𝑐𝑛 sin (𝑛𝜋𝑥) 𝑒−𝜖𝑛
𝛼𝜋𝛼 𝑡, (40)
10
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Fig. 5. The local (left) and global (right) quasi-uniformity of the meshes using the adaptive L2 method for (41) are estimated with different values of
𝛼 = 1.1, 1.3, 1.5, 1.8 at 𝑇 = 1.

Fig. 6. The relative error 𝑒𝑟 of (41) using the L2 method estimated on uniform (blue) and adaptive (red) meshes in the 𝑙∞-norm for 𝛼 = 1.5 at 𝑇 = 1.

with

𝑐𝑛 = 2∫

1

0
𝑔(𝑠) sin (𝑛𝜋𝑠) 𝑑𝑠

= − 1
20

𝑖
√

𝜋
2
𝑒−

1
800 𝜋𝑛(𝜋𝑛+400𝑖)

(

𝑒𝑖𝜋𝑛 − 1
)

(

erf
(

200 − 𝑖𝜋𝑛

20
√

2

)

+ erf
(

200 + 𝑖𝜋𝑛

20
√

2

))

,

where 𝑔 ∈ 𝐶[0, 1] and erf(𝑧) is the error function given by erf(𝑧) = 1
√

𝜋
∫ 𝑧
0 𝑒−𝑠2𝑑𝑠.

Fig. 1 depicts the results for various values of 𝛼 at 𝑇 = 5, along with the mesh movement behaviour specifically for 𝛼 = 1.5 at
𝑇 = 5 with the initial condition (39).

To assess the performance of the adaptive moving mesh algorithm, we define the relative error as

𝑒𝑟 =
‖𝑈 − 𝑢‖∞
‖𝑢‖∞

,

where the 𝑈 is the numerical approximation of 𝑢 at time 𝑇 . Table 1 presents the relative errors 𝑒𝑟 and the corresponding convergence
orders for 𝛼 = 1.1, 1.3, 1.5, 1.8 in the 𝑙∞-norm with various numbers of mesh points 𝑁 . In Fig. 3, we compare the convergence rate
of between the uniform L2 and the adaptive moving L2. It shows clearly that both two meshes are numerically convergent for
𝑁 increasing, and in the early stages of increasing the number of mesh points, adaptive moving L2 exhibit a faster convergence
rate compared to uniform L2. To further evaluate the mesh quality, we calculated the local and global quasi-uniformity measures,
as shown in Fig. 2, providing numerical evidence that no node-crossing(edges connected two nodes intersect or cross each other)
occurred during the simulation. Additionally, the local quasi-uniformity 𝐿 approaches 1 as 𝑁 increases, indicating that the meshes
used in the simulations are well-smoothed and redistributed. These findings demonstrate the effectiveness of the moving mesh
approach in maintaining high mesh quality and avoiding mesh distortion.
11
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Fig. 7. Numerical solutions of (46)–(48) for self-replicating pattern within the interval 𝛺 = (0, 1) with 𝑟𝑢 = 10−5 , 𝑟𝑣 = 10−6 , 𝐹 = 0.024, 𝜅 = 0.06 and 𝛼 = 1.1, 1.5, 1.8, 2
at 𝑇 = 1500, using a 500-moving mesh.
12
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Fig. 8. Self-replicating patterns of the fractional Gray–Scott system (46)–(48) were computed for values of 𝛼 ranging from 1.1 to 2 at time 𝑇 = 1500, using a
500-moving mesh.

Table 1
The relative errors and convergence order of (38) using the L2 method on uniform and adaptive meshes, each with 40, 80,
160, and 320 mesh points, are computed. The computations are performed for 𝛼 values of 1.1, 1.3, 1.5, and 1.8 at time 𝑇 = 5,
employing the 𝑙∞ norm.
𝑁 𝛼 = 1.1 𝛼 = 1.3

Uniform Order Adaptive Order Uniform Order Adaptive Order

40 0.0802 0.0441 0.0403 0.0245
80 0.0450 0.8337 0.0231 0.9329 0.0229 0.8254 0.0121 1.0178
160 0.0239 0.9129 0.0117 0.9814 0.0121 0.9203 0.0060 1.0120
320 0.0125 0.9351 0.0056 1.0630 0.0063 0.9416 0.0029 1.0489

𝑁 𝛼 = 1.5 𝛼 = 1.8

Uniform Order Adaptive Order Uniform Order Adaptive Order

40 0.0288 0.0196 0.0101 0.0109
80 0.0168 0.7776 0.0097 1.0148 0.0066 0.6138 0.0059 0.9353
160 0.0090 0.9005 0.0049 0.9852 0.0036 0.8745 0.0029 1.0255
320 0.0046 0.9683 0.0024 1.0297 0.0018 1.0000 0.0013 1.1635

6.2. The space-fractional heat equation with a source term

We consider the following fractional heat equation with a source term:

⎧

⎪

⎨

⎪

⎩

𝜕𝑢
𝜕𝑡

= −(−𝛥)𝛼∕2𝑢 + 𝑓 (𝑥, 𝑡), 𝑥 ∈ (−1, 1),

𝑢 = 0 on R∖𝛺,
𝑡 ∈ [0, 𝑇 ], (41)

where the non-homogeneous function 𝑓 (𝑥, 𝑡) is defined as

𝑓 (𝑥, 𝑡) = 𝑒𝑡𝑥

⎛

⎜

⎜

⎜

⎝

2𝛼(𝛼 + 1)𝛤
(

𝛼+1
2

)

𝛤
(

1
2

(

𝛼3 + 𝛼 + 6
)

)

2𝐹1

(

𝛼+3
2 ,− 𝛼3

2 − 2; 3
2 ; 𝑥

2
)

√

𝜋𝛤
(

𝛼3
2 + 3

) −
(

1 − 𝑥2
)

1
2
(

𝛼3+𝛼+4
)

⎞

⎟

⎟

⎟

⎠

, (42)

where the Gauss hypergeometric function 2𝐹1(𝑝1, 𝑝2; 𝑞; 𝑧) =
∑∞

𝑛=0
(𝑝1)𝑚(𝑝2)𝑚

(𝑞)𝑚
𝑧𝑚

𝑚! with (𝑥)𝑚 = 𝛤 (𝑥+𝑚)
𝛤 (𝑥) [36]. The analytical solution

to Eq. (41) has been studied in previous works [37–39]., which is

𝑢(𝑥, 𝑡) = 𝑒𝑡𝑥
(

1 − 𝑥2
)

1
2
(

𝛼3+𝛼+4
)

, (𝑥, 𝑡) ∈ (−1, 1) × [0, 𝑇 ], (43)
13
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Fig. 9. Numerical simulations of (46)–(48) for travelling wave pattern within the interval 𝛺 = (0, 1) with parameters 𝑟𝑢 = 2×10−6, 𝑟𝑣 = 10−6, 𝐹 = 0.047, 𝜅 = 0.041,
and 𝛼 = 1.1, 1.5, 1.8, 2 at 𝑇 = 1000, using a 240-moving mesh.
14
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Fig. 10. Propagating speed of travelling waves for 𝛼 from 1.1 to 2.

Fig. 11. Travelling wave patterns of the fractional Gray–Scott system (46)–(48) were computed for values of 𝛼 ranging from 1.1 to 2 at time 𝑇 = 1000, using a
240-moving mesh.

and therefore, we simply take the initial condition as

𝑢(𝑥, 0) = 𝑥
(

1 − 𝑥2
)

1
2
(

𝛼3+𝛼+4
)

. (44)

For the space-fractional PDE, Siwei Duo et al. presents a finite difference method for discretizing the fractional Laplacian in
hypersingular integral form and exhibits consistent convergence behaviour verified through numerical examples for various 𝛼 ∈ (0, 2)
when applied to solve the stationary fractional Laplacian equation with source term [37]. Fig. 4 shows the numerical solution using
𝛼 = 1.1, 1.5, 1.8 at the final time 𝑇 = 1.

Table 2 presents the relative errors 𝑒𝑟 and the corresponding convergence orders for 𝛼 = 1.1, 1.3, 1.5, 1.8 in the 𝑙∞-norm with
various numbers of mesh points 𝑁 . Similarly to the first case, Fig. 5 presents estimates of local and global quasi-uniformity, showing
that the mesh points are well-smoothed with no mesh distortion. And in Fig. 6, the convergence rates of the uniform L2 and the
adaptive moving L2 are compared, showing that adaptive moving L2 performs better numerical convergence in the early stages
when more mesh points are adopted.

From Fig. 4, it can be observed that the numerical solutions are less accurate when 𝛼 is near 1, one reason is that in the L2-
method, fewer points are available to estimate those derivatives near the boundary 𝜕𝛺, resulting in lower accuracy. For example,
the left-derivative at the first mesh point is roughly estimated as

𝐶𝐷
𝛼 𝑢(𝑥1, 𝑡) =

2
(

𝑢0(𝑡) −
𝑢1(𝑡) +

𝑢2(𝑡)
)

(𝑥1 − 𝑥0)2−𝛼 . (45)
15
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Fig. 12. Numerical simulations of (46)–(48) for chaotic pattern within the interval 𝛺 = (0, 1) with parameters 𝑟𝑢 = 4 × 10−6 , 𝑟𝑣 = 10−6 , 𝐹 = 0.022, 𝜅 = 0.05 and
𝛼 = 1.1, 1.5, 1.8, 2 at 𝑇 = 1300, using a 300-moving mesh.
16
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Fig. 13. Chaotic patterns of the fractional Gray–Scott system (46)–(47) were computed for values of 𝛼 ranging from 1.1 to 2 at time 𝑇 = 1300, using a 300-moving
mesh. One possible bifurcation occurs between 𝛼-values of 1.7 and 1.8.

Table 2
The relative errors and convergence order of (41) using the L2 method on uniform and adaptive meshes, each with 40, 80,
160, and 320 mesh points, are computed. The computations are performed for 𝛼 values of 1.1, 1.3, 1.5, and 1.8 at time 𝑇 = 1,
employing the 𝑙∞ norm.
𝑁 𝛼 = 1.1 𝛼 = 1.3

Uniform Order Adaptive Order Uniform Order Adaptive Order

40 0.3496 0.2959 0.1514 0.1174
80 0.2142 0.7063 0.1726 0.7773 0.0836 0.8568 0.0619 0.9234
160 0.1206 0.8285 0.0948 0.8642 0.0440 0.9260 0.0318 0.9609
320 0.0642 0.9092 0.0497 0.9311 0.0226 0.9612 0.0161 0.9820

𝑁 𝛼 = 1.5 𝛼 = 1.8

Uniform Order Adaptive Order Uniform Order Adaptive Order

40 0.0864 0.0621 0.0279 0.0192
80 0.0471 0.8747 0.0321 0.9531 0.0165 0.7517 0.0101 0.9369
160 0.0247 0.9301 0.0163 0.9772 0.0089 0.8941 0.0052 0.9506
320 0.0126 0.9688 0.0083 0.9806 0.0046 0.9397 0.0027 0.9725

Same problem for the right-derivative on the other side of the boundaries. When we combine these two derivatives for calculating
the fractional Laplacian in practical computation, the term − 1

cos(𝛼𝜋∕2) , significantly amplifies the error when 𝛼 ↓ 1. Only when more
mesh points used near the boundaries or 𝑢|𝑅 = 𝑢|𝐿 = 𝑢𝑥|𝑅 = 𝑢𝑥|𝐿 = 0 the L2-method can work well. Consistent with our experience,
this problem will be resolved with the adoption of a larger number of mesh points 𝑁 , see Table 2.

6.3. The space-fractional Gray–Scott(G–S) model

Having gained confidence from successfully applying the numerical scheme to two known fractional Laplacian equations, next
we proceed to numerically solve the equations represented by the Gray–Scott system involved the fractional Laplacian term, which
is given by

⎧

⎪

⎨

⎪

⎩

𝜕𝑢
𝜕𝑡

= −𝑟𝑢(−𝛥)
𝛼
2 𝑢 − 𝑢𝑣2 + 𝐹 (1 − 𝑢),

𝜕𝑣
𝜕𝑡

= −𝑟𝑣(−𝛥)
𝛼
2 𝑣 + 𝑢𝑣2 − (𝐹 + 𝜅)𝑣,

(𝑥, 𝑡) ∈ R × [0, 𝑇 ], (46)

where 𝑢 and 𝑣 are the concentrations of two chemical components in reaction–diffusion process, that are inhibitor and called
activator, respectively.

Well-posedness: The well-posedness of the fractional G–S model has been studied in detail in [40]. For the fractional order 1 < 𝛼 ≤ 2,
the solution of (46) in a finite domain 𝛺 can be bounded under some specific conditions: the solutions 𝑢(𝑡), 𝑣(𝑡) ∈ 𝐻

1
2
0 (𝛺) for any

initial conditions 𝑢0, 𝑣0 ∈ 𝐻
1
2
0 (𝛺), where 𝐻

1
2
0 (𝛺) ∶= 𝐶∞

0 (𝛺) ∩ {𝑢 ∈ 𝐿2(𝛺) ∶ 𝑢(𝑥)−𝑢(𝑦)
1 ∈ 𝐿2(𝛺)}. Therefore, we take the boundary
17

|𝑥−𝑦| 2 +𝑠



Communications in Nonlinear Science and Numerical Simulation 138 (2024) 108231P. Yuan and P.A. Zegeling
Fig. 14. Numerical simulations of (46)–(48) include the standing wave pattern and self-replicating pattern within the interval 𝛺 = (0, 1), with parameters
𝑟𝑢 = 10−5 , 𝑟𝑣 = 5 × 10−6 , 𝐹 = 𝜅 = 1

16
and 𝛼 = 1.1, 1.5, 1.8, 2 at 𝑇 = 2000, using a 240-moving mesh.
18
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Fig. 15. The evolutionary process, including both standing wave and self-replicating patterns of the fractional Gray–Scott system (46)–(48), was computed for
values of 𝛼 ranging from 1.1 to 2 at time 𝑇 = 2000, using a 240-moving mesh. One possible bifurcation occurs between 𝛼-values of 1.8 and 1.9.

conditions as following:

𝑢 = 0 and 𝑣 = 0 on R∖𝛺. (47)

The ordinary (integer-order) Gray–Scott model has been extensively studied by many researchers [21,22,41] The diffusion
coefficients satisfy 𝑟𝑢 ≥ 0, 𝑟𝑣 ≥ 0. The parameters 𝐹 , 𝜅 are positive constants representing feed rate and decay rate, respectively.
This system has the spatially uniform steady states

(

𝑢∗, 𝑣∗
)

= (1, 0) for all values of 𝐹 and 𝜅. In addition, there also exist two steady
states

(

𝑢+, 𝑣−
)

and
(

𝑢−, 𝑣+
)

when 𝐹 ≥ 4(𝐹 + 𝜅)2

(

𝑢+, 𝑣−
)

=
(

1
2
(1 +

√

𝐴), 𝐹
2(𝐹 + 𝜅)

(1 −
√

𝐴)
)

,
(

𝑢−, 𝑣+
)

=
(

1
2
(1 −

√

𝐴), 𝐹
2(𝐹 + 𝜅)

(1 +
√

𝐴)
)

,

where 𝐴 = 1 − 4(𝐹+𝜅)2
𝐹 . As a result, we can get a saddle–node bifurcation for 𝜅𝑐 = −𝐹 + 1

2

√

𝐹 and the critical feed rate

𝐹𝑐 =
√

𝜅(1−2
√

𝜅)−
√

𝜅(1−4
√

𝜅)
2 , 0 ≤ 𝜅 ≤ 𝜅𝑐 . For a detailed other analysis of the dynamical behaviour of the classical(integer-order)

G–S model are referring to [21,40].
In this section, we focus on three patterns: self-replication, travelling and a possible bifurcation point between stable and

self-replication with the following initial condition

[𝑢(𝑥, 0), 𝑣(𝑥, 0)]⊺ = [1 − 1
2
sin10(𝜋𝑥), 1

4
sin10(𝜋𝑥)]⊺. (48)

In the practical computing, we introduced the variable 𝑤 as 𝑤 = 𝑢−1 to give a aligned boundary conditions with the second equation
and to avoid boundary terms of the Laplacian term being taken into account by Theorem 2.2. Subsequently, Eqs. (46)–(48) are
modified by employing (𝑤, 𝑣) as:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑤
𝜕𝑡

= −𝑟𝑤(−𝛥)
𝛼
2 𝑤 − (𝑤 + 1)𝑣2 + 𝐹 (𝑤), (𝑥, 𝑡) ∈ R × [0, 𝑇 ]

𝜕𝑣
𝜕𝑡

= −𝑟𝑣(−𝛥)
𝛼
2 𝑣 + (𝑤 + 1)𝑣2 − (𝐹 + 𝜅)𝑣,

𝑤 = 0 and 𝑣 = 0 on R∖𝛺,

[𝑤(𝑥, 0), 𝑣(𝑥, 0)]⊺ = [−1
2
sin10(𝜋𝑥), 1

4
sin10(𝜋𝑥)]⊺.

(49)

6.3.1. Self-replicating patterns
Based on [21,22], we choose the parameters 𝑟𝑤 = 10−5, 𝑟𝑣 = 10−6, 𝐹 = 0.024, 𝜅 = 0.06, the numerical solution and the

corresponding trajectory of the mesh movement towards Eq. (49) are depicted in Fig. 7.
Fig. 8 shows the evolution of the fractional Gray–Scott equations with 𝛼 at the final time 𝑇 = 1500.

6.3.2. Travelling waves
By choosing the parameters 𝑟𝑤 = 2×10−6, 𝑟𝑣 = 10−6, 𝐹 = 0.047, 𝜅 = 0.041, the numerical solution and the corresponding trajectory

of the mesh movement towards Eq. (49) are depicted in Fig. 9. The propagating speed of waves for 𝛼 values arranging from 1.1 to
2 is also depicted in Fig. 10.

Fig. 11 shows the evolution of the fractional Gray–Scott equations with 𝛼 at the final time 𝑇 = 1000.
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Fig. 16. Numerical simulations of (46)–(48) include both travelling wave and self-replicating patterns within the interval 𝛺 = (0, 1), with parameters 𝑟𝑢 = 4×10−4,
𝑟𝑣 = 2 × 10−6, 𝐹 = 0.095, 𝜅 = 0.001, and 𝛼 = 1.2, 1.5, 1.8, 2 at 𝑇 = 300, using a 300-moving mesh.
20
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Fig. 17. The evolutionary process, including both self-replicating and travelling patterns of the fractional Gray–Scott system (46)–(47) were computed for values
of 𝛼 ranging from 1.2 to 2 at time T = 300, utilizing a 300-moving mesh. Two possible bifurcation can be observed between 𝛼-values of 1.2 and 1.3, 1.9 and 2.

6.3.3. Chaotic solutions
By choosing the parameters 𝑟𝑤 = 4 × 10−6, 𝑟𝑣 = 2 × 10−6, 𝐹 = 0.022, 𝜅 = 0.05, the numerical solution and the corresponding

trajectory of the mesh movement towards Eq. (49) are depicted in Fig. 12.
Fig. 13 shows the evolution of the fractional Gray–Scott equations with varying 𝛼 at the final time 𝑇 = 1300. One possible

bifurcation may exist between 𝛼 values of 1.7 and 1.8, corresponding to the moment when two travelling fronts meet.

6.3.4. Evolutionary process from standing wave to self-replicating pattern
The main feature of the associated ODE of (46) is that it has a Bogdanov–Takens point at (𝜅, 𝐹 ) = ( 1

16 ,
1
16 ) together with a stable

critical point (1, 0). A Bogdanov–Takens point is a singularity of codim 2, where Saddle-Node and Hopf bifurcations merge into
two-dimensional parameter space (𝜅, 𝐹 ) [41], and most of the interesting PDE dynamics appears near these two bifurcation lines for
the classical Gray–Scott model. Thus, we applied these two values to the fractional model (46) and observed a possible bifurcation
point by choosing the parameters 𝑟𝑤 = 10−5, 𝑟𝑣 = 5 × 10−6, 𝐹 = 𝜅 = 1

16 . Under this selection of parameters, the kinetics for the
Gray–Scott model changed from self replication to stable with 𝛼 increasing, a possible bifurcation point could be existed between
1.8 and 1.9. This is presented in Fig. 15. And the numerical solutions and the corresponding trajectory of the mesh movement
towards Eq. (49) are depicted in Fig. 14.

6.3.5. Evolutionary process from travelling wave to self-replicating pattern
By choosing the parameters 𝑟𝑤 = 4 × 10−4, 𝑟𝑣 = 2 × 10−6, 𝐹 = 0.095, 𝜅 = 0.001, the numerical solution and the corresponding

trajectory of the mesh movement towards Eq. (49) are depicted in Fig. 16. In this experiment, we started with 𝛼 = 1.2 instead
of 𝛼 = 1.1 because the derivatives undergo drastic changes within a very small region, almost reaching discontinuity. Therefore,
more mesh points are needed to achieve more accurate solutions in 𝛼 ↓ 1-cases. The studies conducted in [42,43] confirm the loss
of periodicity in the fractional time derivative, that is periodicity is not transferred by fractional integral or derivative, with the
exception of the zero function. In this work, we numerically present that periodicity diminishes in space as 𝛼 decreases from 2 and
transforms into a travelling wave as 𝛼 approaches 1, two possible bifurcation points could be existed between 1.2 and 1.3, 1.9 and
2, see Fig. 17.

7. Conclusions

In conclusion, this paper introduced an innovative method for computing the fractional Laplacian using Riemann–Liouville
derivatives, incorporating a boundary condition of 𝑢 = 0 in R∖𝛺. Notably, for smooth functions 𝑢 ∈ 𝑆(𝛺), the proposed approach
simplifies the Riemann–Liouville derivatives to the Caputo derivatives due to the vanishing boundaries. The extension of the
L2 method to non-uniform meshes was presented, accompanied by a proof of its numerical consistency. The flexibility of the
non-uniform L2 method in constructing meshes allows users to choose different mesh updating techniques, enhancing numerical
performance for various problems.

The adaptive moving finite differences method was employed for spatial mesh generation, offering adaptability at each time step
through grid reallocation based on the previous solution. The choice of MMPDE5 for mesh movement, based on the equidistribution
principle, proved effective. However, initial observations revealed rapid mesh movement, particularly challenging to discern in
specific cases. The numerical scheme’s feasibility was validated through two experiments, demonstrating improved results.
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The primary objective of this study was to solve space-fractional PDE problems in one dimension and apply the proposed
umerical method to a nonlinear fractional PDE problem, i.e., the fractional Gray–Scott model. Numerical experiments focused on the
ractional Gray–Scott revealed three patterns including patterns of self-replication, travelling, chaotic and two distinct evolutionary
rocesses from self-replicated pattern to standing wave and from travelling wave to self-replication pattern.

In future work, we will attempt to extend this method to the two-dimensional case. The pattern formation of the two-
imensional space-fractional Gray–Scott model has been an important topic, and some studies have already proposed related
umerical algorithms. We will compare the numerical performance of these methods with the adaptive L2 method. Additionally,
e plan to apply this method to other nonlinear models, such as the space-fractional Cahn–Hilliard equation and the time–space

ractional Schrödinger equation.
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