
Robust and Efficient Adaptive Moving Mesh

Solution of the 2-D Euler equations∗

P. A. Zegeling & W. D. de Boer

Mathematical Institute, Utrecht University

P.O. Box 80.010, 3508 TA Utrecht, The Netherlands

H. Z. Tang

LMAM, School of Mathematical Sciences, Peking University

Beijing 100871, P.R. China

Abstract

In this paper we describe an adaptive moving mesh technique and its
application to the 2D Euler equations. The adaptive mesh is derived
from the minimization of a mesh-energy integral. A robust and effi-
cient monitor function with a time-dependent, automatically chosen,
adaptivity parameter is used to track individual features of the physi-
cal solutions, such as shocks and emerging instabilities. The results of
a series of numerical experiments are presented, including shock waves
and a Rayleigh-Taylor instability.

1 Introduction

Over the years a large number of adaptive mesh methods have been pro-
posed for time-dependent partial differential equation (PDE) models. Here,
we describe a dynamic-remeshing technique in which the nodes are mov-
ing continuously in the space-time domain. Examples of such methods can
be found in [6, 11, 9, 15]. In this study an adaptive moving mesh method
is derived that is based on a minimization of a so-called mesh-energy in-
tegral. The corresponding Euler-Lagrange equations then define a set of
adaptive mesh PDEs. In one space dimension this reduces to the widely-
used equi-distribution principle; in two space dimensions it is related (but
not equivalent to) harmonic mapping based methods supplemented with a
monitor matrix to detect the steep transitions in the solution.
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Since the physical domain in our applications is rectangular, we can
use a simplified system of adaptive mesh PDEs, similar to [11]. We have
also borrowed ideas from [2] in which the difficult choice of a user-defined
adaptivity constant in the monitor function is replaced by a procedure where
the parameter is time-dependent and automatically chosen. Moreover, the
discretization of the PDE model and the moving mesh is decoupled. For the
numerical approximation of the physical PDE, which consists of systems
of hyperbolic conservation laws, a finite volume discretization with a local
Lax-Friedrichs numerical flux is chosen. For the resulting elliptic, adaptive
mesh PDEs, a Gauß-Seidel type iteration method is used.

The layout of the paper is as follows. In the next section we present the
2D Euler equations model. The adaptive moving mesh method is defined
in Section 3. Section 4 describes the numerical algorithm for solving the
physical and mesh PDEs. In Section 5 numerical experiments are performed
for several models with shocks and also a Rayleigh-Taylor instability model.
Finally, Section 6 lists our conclusions.

2 The 2D Euler equations

The two-dimensional Euler equations of gas dynamics describing the behav-
ior of an ideal compressible gas, are written in conservative form:
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where ρ is the density, (ρu, ρv)T is the momentum vector, E the total energy
and p the pressure. Since we are working with an ideal gas, the equation of
state, which shows how the energy is related to the pressure is provided as
follows: p = (γ − 1)(E − ρu2+v2

2 ), with γ the ratio of specific heats. Denote
r := (x, y). In our computations, we will specify homogeneous Neumann
conditions, except for one case that will be explained in Section 5.3. The
initial data for each test case are given in Section 5.

3 The adaptive moving mesh PDEs

3.1 Winslow’s method

The adaptive mesh can be seen as an approximation of a coordinate transfor-
mation between computational coordinates (ξ, η)T ∈ Ωc := [0, 1]×[0, 1] (with
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a uniform mesh partitioning) and physical coordinates (x, y)T ∈ Ωp ⊂ R2

(with a non-uniform, i.e. adaptive mesh). In a variational setting, a “mesh-
energy” functional [14] can be defined as

E =
1

2

∫∫

Ωc

(

∇T x ω ∇x + ∇T y ω ∇y
)

dξdη, (2)

where ∇ = ( ∂
∂ξ , ∂

∂η )T and ω > 0 a monitor function in which the solution
dependence of the transformation is reflected. Minimizing the energy E , the
corresponding Euler-Lagrange equations yield:

∇ · (ω∇x) = 0, ∇ · (ω∇y) = 0. (3)

These elliptic equations form the basis of the adaptive mesh algorithm. For
the interested reader, we refer to [11, 15] for more details on system (3) and
to [5, 6, 10] for more details on other types of monitors ω and functionals
E , respectively. In one space dimension this idea reduces to the well-known
equi-distribution principle: (ωxξ)ξ = 0, with boundary conditions x(0) =
xl, x(1) = xr, or equivalently, ξx = c ω with a constant c. Then, an
explicit formula for ξ as a function of x can be easily derived:

1 = ξ(xr) − ξ(xl) =

∫ xr

xl

ξx dx̄ = c

∫ xr

xl

ω dx̄ ⇒ ξx =
ω(x)

∫ xr

xl
ω dx̄

,

and integrating once more gives ξ(x) =

∫ x

xl
ω(x̄) dx̄

∫ xr
xl

ω(x̄) dx̄
.

It can be shown that the transformation, being the solution of (3),
remains non-singular, which indicates that the adaptive mesh stays regu-
lar. The theoretical result that states the regularity was given by Clément
et al [4]. Their proof consists of three main ingredients: application of
the Carleman-Hartman-Winter theorem, the Jordan curve theorem and the
maximum principle for elliptic PDEs. It reads:
Let ω ≥ c̃ > 0, ω ∈ C0,1(Ωc) and ωξ, ωη ∈ Cγ(Ω̄c), γ ∈ (0, 1). With
the boundary conditions x|ξ=0 = y|η=0 = 0, x|ξ=1 = y|η=1 = 1, ∂x

∂n |ξ=0 =
∂x
∂n |ξ=1 = ∂y

∂n |η=0 = ∂y
∂n |η=1 = 0, there exists a unique solution (x, y) ∈

C2(Ω̄c),which is a bijection from Ω̄c into itself. Moreover, the Jacobian
J = xξyη−xηyξ > 0, i.e. the transformation satisfying (3) is non-singular.

3.2 The monitor function ω

A traditional choice for the monitor function ω in (3) (see [11]) to detect
regions with high spatial activity (for example, of the density ρ in the Euler
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equations) is an arclength-type monitor (AL-monitor)

ω =
√

1 + α ∇ρ · ∇ρ. (4)

Here the parameter α is an ‘adaptivity’-parameter which controls the amount
of adaptivity. For α = 0, we have ω = 1, representing a uniform mesh (the
transformation becomes the identity). Higher values of α > 0 allow for
more adaptivity. However, α is problem-dependent: in general, there is no
straightforward rule how to choose this parameter. It is known from prac-
tice that several experiments have to be done to arrive at an ‘optimal’ choice
with respect to accuracy and efficiency.

An alternative for this monitor function deals with this issue and involves
a time-dependent parameter that is automatically chosen. In the application
of this paper it reads

ω = α(t) + ||∇ρ||
1

m

2 , with α(t) =

∫∫

Ωc

||∇ρ||
1

m

2 dξdη. (5)

The choice m = 2 was made in [1] and [2] (for a slightly different case,
namely using physical derivatives instead of computational derivatives in
the monitor), following a 1D-result for a special situation. In this paper we
consider m = 1. For this value of m, the derivatives of monitor (5) scale the
same as for monitor (4), whereas for m = 2, they do not. Intuitively, the
results of both monitor functions will be similar for m = 1. It is interesting
to note that the idea of relating the adaptivity constant to the integral of
the monitor values was already posed in [3]. However, the theoretical and
practical implementation of this idea was only quite recently done in the
earlier mentioned works.

Following ideas from [7, 5], we can give a short explanation why using
(5) may be benificial. Define

ω̃ = 1 +
γ||∇ρ||2

(1 − γ)
∫∫

Ωc
||∇ρ||2 dξdη

,

with γ ∈ [0, 1). Then for γ = 1
2 we have ω̃ = 1 + ||∇ρ||2

∫∫

Ωc
||∇ρ||2 dξdη

which

is equivalent to using (5) in combination with (3), since the constant α(t)
(at each time level) can be taken through the differentiation in (3). If, for
example, ||∇ρ||2 ≈

∫∫

Ωc
||∇ρ||2 dξdη, then ω̃ ≈ 1

1−γ , giving a uniform mesh.
Furthermore, it can be derived that

γ =

∫∫

Ωc
ω̃ dξdη − 1

∫∫

Ωc
ω̃ dξdη

.
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For increasing values of γ ↑ 1 the mesh becomes more and more adaptive,
whereas for γ = 1

2 (our situation) we find that approximately half of the
mesh points will be concentrated in regions of high spatial derivatives and
the other half in more flat regions of the solution. This follows from the
fact that

∫∫

Ωc
ω̃ dξdη is related to the total number of mesh points and

∫∫

Ωc
(ω̃−1) dξdη =

∫∫

Ωc
ω̃ dξdη−1 to the number of mesh points in the steep

layer (where ω̃ is large), respectively. Therefore, an extra consequence of this
property is that the adaptive meshes are much smoother distributed than
for the constant α case in (4). With the choice (5), the use of applying an
additional filter or smoother to the mesh or monitor values is not necessary.
In literature, for instance in [11], smoother transitions in a non-uniform
mesh can be obtained by working with the smoothed discretized value

S(ωi+ 1

2
,j+ 1

2

) =
1

4
ωi+ 1

2
,j+ 1

2

+
1

8
(ωi+ 3

2
,j+ 1

2

+ ωi− 1

2
,j+ 1

2

+ ωi+ 1

2
,j+ 3

2

+ ωi+ 1

2
,j− 1

2

)

+
1

16
(ωi− 1

2
,j− 1

2

+ ωi− 1

2
,j+ 3

2

+ ωi+ 3

2
,j− 1

2

+ ωi+ 3

2
,j+ 3

2

) (6)

instead of ωi,j itself. This weighted sum corresponds to averaging the influ-
ence of the monitor values at neighbouring mesh points. In the numerical
experiments we will denote this with filter on (using (6)), and filter off
(working merely with ωij values).

4 The numerical PDE procedure

A possible approach, which is efficient in 1D, would be to couple the dis-
cretized systems for the adaptive mesh PDEs and the physical PDE. How-
ever, there are a number of disadvantages to this approach. One reason
not to couple the PDEs is the following: a user may wish to control the
discretization of the physical problem and such flexibility is severely re-
stricted by coupling the unknowns together. We have chosen to decouple
the numerical solution procedure for the Euler equations and adaptive mesh
PDEs, solving for the mesh and the physical solution alternately. This will
be briefly worked out in Section 4.4. First, we describe how to discretize the
adaptive mesh PDEs.

4.1 Discretization of the mesh PDEs

Given a non-uniform partitioning {Ai+ 1

2
,j+ 1

2

}i,j of the physical domain Ωp,

where Ai+ 1

2
,j+ 1

2

is a quadrangle with four vertices ri+k,j+l, 0 ≤ k, l ≤ 1, as
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shown in Figure 1. Subdivide the computational domain Ωc = {(ξ, η)| 0 ≤
ξ ≤ 1, 0 ≤ η ≤ 1} into the uniform mesh:

(ξi, ηj)| ξi = i∆ξ, ηj = j∆η; 0 ≤ i ≤ Iξ + 1, 0 ≤ j ≤ Iη + 1

where ∆ξ = 1/(Iξ + 1), ∆η = 1/(Iη + 1), and Iξ and Iη are the number
of mesh points in the x− and y−direction. We characterize the numerical
approximations to r = r(ξ, η) by ri,j = r(ξi, ηj). The elliptic system of
mesh PDEs is then discretized by second-order central finite differences in
a straightforward manner. A Gauß-Seidel iteration method is used for the
numerical solution of the resulting system of algebraic equations. The mesh
points on the boundary of the rectangular domain are redistributed each
time step by letting them move with the same speed as the tangential com-
ponent of the mesh speed of the internal points adjacent to those boundary
points (see [11] for more details on this).

4.2 A conservative solution-updating method

Having computed the new mesh as described in the previous section, the so-
lution values have to be updated on this mesh by an interpolation method.
In [11, 10] a conservative interpolation method is derived to preserve con-
servation of mass at each mesh redistribution step. Obviously, with simple
linear interpolation this can not be achieved. Let ri,j and r̃i,j be the coor-
dinates of old and new mesh points, respectively (the mesh point ri,j moves
to position r̃i,j after having applied the Gauß-Seidel iterations). Similarly,
denote with Ai+ 1

2
,j+ 1

2

and Ãi+ 1

2
,j+ 1

2

the old and new finite control volumes,

being set up as shown in figure 1. Then, using a perturbation technique (see
[11]) and assuming small mesh speeds, it can be derived that the solution-
updating scheme satisfies the following mass-conservation

∑

i,j

|Ãi+ 1

2
,j+ 1

2

| Q̃i+ 1

2
,j+ 1

2

=
∑

i,j

|Ai+ 1

2
,j+ 1

2

| Qi+ 1

2
,j+ 1

2

,

where |A| is the area of cell A, and Q and Q̃ represent old and new numerical
solution values in the physical PDE system.

4.3 Finite volume Discretization on non-uniform meshes

Consider the two-dimensional hyperbolic conservation laws

∂Q

∂t
+

∂F1(Q)

∂x
+

∂F2(Q)

∂y
= G(x, y,Q), 0 < t ≤ T, (7)
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Figure 1: A typical non-uniform finite volume cell Ai+ 1

2
,j+ 1

2

.

subject to the initial data Q(x, y, 0) = Q0(x, y) , where T is the final time,
and Q denotes the vector of conservative variables. F1 and F2 are the flux
vectors in x- and y-direction, whereas G is a vector of source terms. A
typical example of conservation laws in the form (7) with G = 0 is given
by the Euler equations as defined in (1). The case G 6= 0 appears in the
numerical experiments, when treating the Rayleigh-Taylor instability model
in Section 5.3.

Assume that a mesh partitioning ri,j of the physical domain Ωp has been
calculated. Then integrating (7) over the finite control volume Ai+ 1

2
,j+ 1

2

gives (see [12] or [13])

∂

∂t

∫∫

A
i+1

2
,j+1

2

Q dx dy +
4

∑

l=1

∫

sl

F
nl(Q)|(x,y)∈sl

ds =

∫∫

A
i+1

2
,j+1

2

G dx dy,

where sl (l = 1, ...4) are the four boundary segments of the cell, Fnl(Q) =
F1n

l
x +F2n

l
y and nl = (nl

x, nl
y)

T (l = 1, ..., 4) the normal outward vectors in

the finite volume (see Figure 1). Assuming Fnl = F+
nl + F−

nl , a general 2d
finite volume scheme approximating (7) is given by

Qn+1
i+ 1

2
,j+ 1

2

=Qn
i+ 1

2
,j+ 1

2

−
∆t

|Ai+ 1

2
,j+ 1

2

|

{

F−
n1(Q

n
i+ 1

2
,j− 1

2

) + F−
n2(Q

n
i+3/2,j+ 1

2

)

+ F−
n3(Q

n
i+ 1

2
,j+3/2

) + F−
n4(Q

n
i− 1

2
,j+ 1

2

) +

4
∑

l=1

F+
nl(Q

n
i+ 1

2
,j+ 1

2

)
}

+ ∆t Gn
i+ 1

2
,j+ 1

2

. (8)
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In our experiments, we have used a local Lax-Friedrichs numerical flux in
(8), and the initial data reconstruction to improve accuracy of the scheme
(see [10]). The time step size ∆t is determined every time step by ∆t =
min(∆x,∆y) CFL

max |λ| , where λ are the eigenvalues of the Jacobi matrix ∂F

∂Q and
the CFL-number CFL will be specified in Section 5.

4.4 Decoupling of the PDEs

The steps in the full solution procedure can be summarized as follows:

Step 1 Partition the computational domain Ωc uniformly and give an initial
partition of the physical domain Ωp; compute initial mesh values by a
cell average of the control volume Ai+ 1

2
,j+ 1

2

based on the initial data

Q(x, y, 0). In a loop over the time steps, update mesh and solution
and evaluate the PDE.

Step 2a Move mesh ri,j to r̃i,j by solving the discretized mesh PDEs (3)
using one Gauß-Seidel iteration.

Step 2b Compute the solution Qi+ 1

2
,j+ 1

2

on the new physical mesh based

on the conservative interpolation from Section 4.2.
Repeat step 2a and step 2b for a fixed number of iterations.

Step 3 Evaluate the Euler equations by the finite volume method on the
mesh r̃i,j to obtain the solutions Qn+1

i+ 1

2
,j+ 1

2

at time-level tn+1.

Step 4 Repeat steps 2a, 2b and 3 until the final point of time T has been
reached.

5 Numerical experiments

In this section, we present several numerical experiments to demonstrate
the performance of our algorithm. Until stated otherwise, the CFL number
is taken as 0.48, γ = 1.4, and the cell number is 100 × 100 for our all
computations. The double integral in (5) to compute the time-dependent
parameter α(t) is approximated by applying the trapezoid rule at each time
step. All experiments were performed on a SUNblade150 workstation with
a sparcv9 processor (650 MHz).
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5.1 2D Riemann problem: Shock waves

The first test example, which is a two-dimensional Riemann problem of the
Euler equation, i.e. configuration 4 in [8], has the following initial data:

(ρ, u, v, p)t=0 =















(1.1, 0.0, 0.0, 1.1) if x > 0.5, y > 0.5,
(0.5065, 0.8939, 0.0, 0.35) if x < 0.5, y > 0.5,
(1.1, 0.8939, 0.8939, 1.1) if x < 0.5, y < 0.5,
(0.5065, 0.0, 0.8939, 0.35) if x > 0.5, y < 0.5.

(9)

They correspond to a left forward shock, right backward shock, upper back-
ward shock and finally a lower forward shock. The spatial domain is [0, 1]×
[0, 1] and the end point of time is t = 0.25.

We first check the dependence of the AL-monitor (4) on the value of the
parameter α. In Figure 2, the computational results with the use of filter
(6) are shown for α = 0.01, 2, and 10, respectively. We have displayed 25
contour lines in each contour plot. As the parameter α increase, the shock
resolution becomes sharper and the mesh is highly concentrated near the
discontinuities. However, when α is chosen bigger, the computational costs
become much higher (see also Table 1). Hence, a kind of ‘optimal’ choice,
in terms of accuracy and efficiency, is α = 2 (as chosen in [11]).

Next, we investigate the monitor function (5). The corresponding results
shown in Figure 3 are computed by using the monitor (5) with m = 2 (the
original choice) and m = 1 (a choice to fit better with the ‘dimensions’). For
comparison, the density on a uniform (non-adaptive) finer mesh is depicted
there as well. Taking m = 1 instead of m = 2 gives also a slightly more
concentrated mesh around the steep transitions in the numerical solution.

In Figure 4 we show adaptive meshes, zoomed in around the point (0.92,
0.15) to compare the effects of the different monitors and the filter. From
left to right they are respectively AL-monitor with α = 2 (filter off), AL-
monitor with α = 2 (filter on), and the monitor (5) with m = 1 (no filter
needed). We observe that the straight shock in the first two cases becomes
slightly curved due to the highly concentrated mesh there; on the other
hand, the shape of the shock is still retained in the third case. Compared
with numerical experiments on a very fine uniform mesh, we note that, in
Table 1 and also in the left frames of Figure 3, the results could be improved
by choosing a (much) smaller CFL number, yielding more accurate results,
but then with even much longer computing times.

For an overview of the above described cases, all choices and runtimes
are listed in Table 1.
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Figure 2: Numerical results for the AL-monitor for different values of α (left:
α = 0.01, middle: α = 2, right: α = 10).

5.2 Three other configurations

To further demonstrate the performance of the new adaptive mesh algo-
rithm, we compute three other two-dimensional Riemann problems with the
initial conditions corresponding to configurations 6, 8, and 12 named in
[8]. The numerical solutions at t = 0.25, in terms of density contour lines,
shown in Figure 5 are computed by using the monitor function (5) with
m = 1 and no filter. The runtimes are : 0h55m for configuration 6, 0h34m

for configuration 8 and 1h25m for configuration 12, respectively.

5.3 Rayleigh-Taylor instability

For the background of this model we refer to [16]. The instability happens
on an interface between fluids with different when an acceleration is directed
from the heavy fluid to the light fluid. It has a fingering nature, with bubbles
of light fluid rising into the ambient heavy fluid and spikes of heavy fluid
falling into the light fluid. For this case, we solve the two-dimensional Euler
equations (1) with an extra source term: G = (0, 0, ρg, ρvg)T , where g is
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Figure 3: Numerical results for the monitor (5) (middle plot: m = 2, right
plot: m = 1) and comparison with uniform mesh results (left upper plot:
400 × 400 mesh and left lower plot: 600 × 600 mesh).

the acceleration due to gravity. The computational domain is [0, 0.25] ×
[0, 1] and the interface is initially located at y = 0.5. Boundary conditions
are implemented as follows: reflection conditions are at both left and right
boundaries; the flow values are specified as ρ = 1, p = 2.5, u, v = 0 at the
top, and ρ = 2, p = 1, u, v = 0 at the bottom. We now take γ = 5

3 and
g = 1 (a rescaled value). Figure 6 shows the computed solution (the density)
and the adaptive mesh at four points of time. The results are obtained by
using monitor (5) with m = 1 and no filter. We see that the mesh nicely
concentrates near areas of high spatial activity. There is again no need for
tuning of the numerical parameters in the adaptive method.

6 Conclusions

In this paper we have applied an adaptive moving mesh technique to the
two-dimensional Euler equations from gas dynamics. The adaptive method,
based on a coordinate transformation between physical and computational
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Figure 4: Adaptive mesh, zoomed in around the point (0.92, 0.15); left plot:
AL-monitor with α = 2 and filter off; middle plot: AL-monitor with α = 2
and filter on; right plot: monitor (5) with m = 1 (no filter needed).

RUN # monitor α m filter runtime

I AL-monitor 0.01 - on 0h15m

II AL-monitor 0.1 - on 0h47m

III AL-monitor 2.0 - on 2h31m

IV AL-monitor 10.0 - on 5h48m

V AL-monitor 2.0 - off 3h04m

VI monitor (5) - 2 off 0h57m

VII monitor (5) - 1 off 1h09m

VIII uniform (400 × 400) - - - 1h05m

IX uniform (600 × 600) - - - 3h50m

Table 1: The runtimes for the shock wave model (9).

coordinates, is derived from the minimization of a mesh-energy functional.
Within the adaptive strategy a monitor function has been used with a time-
dependent and automatically chosen parameter, in contrast to previous pa-
pers in which the adaptivity parameter had to be adjusted for each PDE
model. Further, no additional filter was needed to deal with a potential
non-smoothness of the nonuniform mesh. Moreover, the computing times
for similar test models were much lower than when using the traditional
arclength-type monitor function (with the need of tuning of the parame-
ter and an extra filter for the mesh). The robustness and efficiency of the
method has been demonstrated via several numerical experiments, among
others, for shock waves and a Rayleigh-Taylor instability model.
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Figure 5: Numerical results for conf.6 (top), conf.8 (middle) and conf.12.
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Figure 6: Numerical results for the Rayleigh-Taylor instability model at
t = 0.5, 1.5, 2.0 and 3.0. 16


