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Abstract

In this paper we describe an adaptive moving mesh technique and its application to reaction–di%usion models
from chemistry. The method is based on a coordinate transformation between physical and computational
coordinates. The transformation can be viewed as a solution of adaptive mesh partial di%erential equations
(PDEs) which is derived from the minimization of a mesh-energy integral. For an e:cient implementation
we have used an approach in which the numerical solution of the physical PDEs and the adaptive PDEs are
decoupled. Further, to avoid solving large nonlinear systems, a second-order implicit–explicit time-integration
method in combination with the iterative method Bi-CGSTAB is applied in the method-of-lines procedure.
Numerical examples are given in one and two space dimensions.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Many unsteady models governed by reaction–di%usion partial di%erential equation systems have
solutions with regions of high spatial variation such as emerging and splitting pulses, boundary lay-
ers or moving wave fronts. The partial di%erential equation (PDE) models often describe chemical
reaction and di%usion processes with interesting spatial patterns. The reaction kinetics can be repre-
sented with a nonlinear source term and the di%usion by the Laplacian operator, respectively. From
a computational point of view it is known that the use of uniform Axed spatial meshes is highly
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ine:cient for resolving the steep moving parts of the solution in such PDE systems. In those situ-
ations adaptive meshes play an increasingly growing role (see [1,2,6,10,15] and references therein).
In this paper we describe an adaptive moving mesh technique that is based on a minimization of
a so-called mesh-energy integral. The corresponding Euler–Lagrange equations then deAne a set of
adaptive mesh PDEs. In one space dimension this reduces to the widely used equidistribution princi-
ple; in two space dimensions it is related to harmonic mapping theory supplied by a monitor matrix
to detect the steep transitions in the solution. The adaptive mesh method can be seen as a discretiza-
tion of the physical model in a transformed coordinate system coupled with the mesh equations [18].
The method of lines (MOL) is used to numerically approximate the solution of the PDE model. For
the integration in time, 2-SBDF is applied, which is a second-order implicit–explicit method. The
implicit part of this method deals with the (linear) di%usion, whereas the explicit part takes care
of the (nonlinear) reaction terms in the model [13], thereby avoiding the use of a nonlinear system
solver, like Newton’s method. Additionally, the discretization of the PDE model and the moving
mesh is decoupled. For solving the linear (nonsymmetric) system behind the adaptive moving mesh
equations, the iterative method Bi-CGSTAB (see [16]) is used. A simple Altering technique is used
to cope with less smooth transitions between higher and lower mesh concentrations in the domain.
The chosen combination of techniques makes the full procedure of interest for accurately com-
puting numerical solutions of reaction–di%usion systems with mildly sti% reaction-terms. Numerical
results are shown for two di%erent applications: the Gray–Scott model with complex pattern for-
mation that possesses solutions with splitting pulses which describes irreversible chemical reactions
with an inert product [12,4], and the Brusselator model [11] having periodic solutions with steep
moving layers.

2. The adaptive moving mesh method

2.1. A coordinate transformation

Consider the following scalar reaction–di%usion model:

ut = �Mu+ s(u; x; y; t); (1)

where (x; y)∈ [xl; xr] × [yl; yu] ⊂ R2, t ∈ [0; T ], 0¡� is the di%usion coe:cient, and s a nonlinear
sourceterm. It is common and useful in structured adaptive mesh methods to Arst apply a coordinate
transformation to the physical PDE model (1). The adaptive mesh can then be seen as a uniform
discretization of this mapping in the new variables. Applying the transformation

�= �(x; y; t); 
= 
(x; y; t); �= t; (2)

to Eq. (1) gives (a similar derivation can be made for a system of PDEs, and the one-dimensional
case is obtained by freezing the second space direction)

u� +
1
J
[u�[y�x
 − x�y
] + u
[x�y� − y�x�]]
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=s(u; x; y; �) +
�
J
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x2
 + y2


J
u�

]
�

−
[ y�y
 + x�x


J
u


]
�

−
[ y�y
 + x�x


J
u�

]


+

[
x2� + y2�

J
u


]



]
; (3)

where J = x�y
 − x
y� is the Jacobian of the inverse transformation.

2.2. The adaptive mesh PDEs

The transformation, in other words, the adaptive mesh, is prescribed by the so-called adaptive
moving mesh PDEs.
Let x̃ = (x1; : : : ; xd)∈�p and �̃ = (�1; : : : ; �d)∈�c := [0; 1]d be the physical and computational

coordinates, respectively (with d¿ 1 the spatial dimension). The general transformation is then
given by: �̃= �̃(̃x), x̃∈�p, with inverse x̃= x̃(̃�), �̃∈�c. In a variational setting, the ‘mesh-energy’
functional is deAned by

E(̃�) =
1
2

d∑
k=1

∫
�p

∇�TkM−1
k ∇�k dx̃;

where ∇ := (9x1 ; 9x2 ; : : : ; 9xd)T and Mk are given monitor matrices. In this context, the functional
may be considered as the energy of a system of (virtual) springs connecting the mesh points (‘mass
points’) in the discretized domain. The mesh, i.e. the transformation, is determined by minimizing
the energy functional via the Euler–Lagrange equations: ∇ · (M−1

k ∇�k) = 0, 16 k6d (see [8] or
[9] for more details on this speciAc type of functionals).
A simple choice for the monitor function is Mk = !I; 16 k6d, where I is the identity ma-

trix and ! a positive weight function. With this choice we obtain Winslow’s variable di%usion
method [17]

∇ ·
(
1
!

∇�k
)
= 0; 16 k6d: (4)

In one space dimension the Euler–Lagrange equations reduce to (!−1�x)x = 0, which gives the
equidistribution principle: !−1�x=c(onstant) ⇔ !x�= c̃(onstant), or equivalently the boundary-value
problem: (!x�)�=0, with boundary conditions x(0)=xl, x(1)=xr . For this case, an explicit formula
for the inverse transformation �(x) can be derived. Note Arst that

1 = �(xr)− �(xl) =
∫ xr

xl

�x dx = c
∫ xr

xl

! d Rx ⇒ �x =
!(x)∫ xr
xl
! d Rx

;

from which follows that the 1D transformation is nonsingular. Integrating once more gives �(x) =∫ x
xl
!( Rx) d Rx=

∫ xr
xl
!( Rx) d Rx.

In two space dimensions (writing x1 = x, x2 = y, �1 = �, �2 = 
) Eqs. (4) becomes

(!−1�x)x + (!−1�y)y = 0;

(!−1
x)x + (!−1
y)y = 0: (5)
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In practice, the physical domain may have very complex geometry and as a result directly solving
the elliptic system (5) on structured meshes is unrealistic. Therefore, usually the corresponding mesh
generation equations on the computational domain are solved by interchanging the dependent and
independent variables in (5). However, the resulting system is much more complicated than the orig-
inal equations (5), which requires more computational e%ort in obtaining numerical approximations.
If the physical domain is convex, an alternative approach (see also [14]) is to consider the energy
functional in the computational domain. Unlike the re-written classical equations (5) a very simple
structure is maintained. In 2D the functional now reads:

Ẽ(x; y) = 1
2

∫
�c

(∇̃TxM1∇̃x + ∇̃TyM2∇̃y) d� d
;

where ∇̃= (9�; 9
)T. The corresponding Euler–Lagrange equations are then of the form

9�(M19�x) + 9
(M19
x) = 0;

9�(M29�y) + 9
(M29
y) = 0: (6)

We choose the monitor functions M1 = M2 = !I with ! =
√
1 + �∇̃u · ∇̃u to detect regions with

high Arst-order spatial derivatives. Using theoretical results from di%erential geometry [3], it can be
proved that the transformation as a solution of the elliptic PDEs (6) is nonsingular, and therefore
that the adaptive mesh cannot collapse (at least in a continuous formulation). The parameter �
is an ‘adaptivity’-parameter which controls the amount of adaptivity. For � = 0, we get ! = 1 and
M1=M2=I . Eqs. (6) then yield a system of two Laplace equations for the mesh with trivial boundary
conditions on the unit square. The solution of this system, obviously, is the identity transformation:
x(�; 
) = x, y(�; 
) = y, representing a uniform mesh in both directions. Higher values of �¿ 0
allow, of course, for more adaptivity. A default value for this parameter is: � = 1. However, this
choice may depend on the size of the domain and the range (maximum and minimum values) in
the PDE solution.

2.3. Numerical solution of the complete PDE system

One approach would be to couple the discretized systems for the adaptive mesh PDEs and the
physical PDEs. However, there are a number of disadvantages to this approach. First, the size of the
resulting system would be large and even for moderate grid densities may be prohibitive. Second,
this approach does not easily admit di%erent convergence criteria for the mesh and physical solution.
As noted in literature, it is not necessary to compute the mesh with the same level of accuracy
as the physical solution. Finally, a user may wish to control over the discretization of the physical
problem and such Sexibility is severely restricted by coupling the unknowns together into one large
nonlinear system of equations. We have therefore decoupled the numerical solution procedure for
the physical and adaptive mesh PDEs, and integrate in time in an iterative manner, solving for the
mesh and the physical solution alternately. Furthermore, instead of solving (6) we integrate in time
the parabolic PDE system

x� = (!x�)� + (!x
)
;

y� = (!y�)� + (!y
)
; (7)
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where � is an artiAcial time variable within the time integration process. In the theoretical limit,
� → ∞, the mesh reaches the steady-state situation (6). Numerically this means that after a number
of time steps the mesh will adjust to the physical PDE solution. The decoupled procedure, which is
closely related to the alternate solution procedure in Ref. [7], is outlined in Algorithm 1.

Algorithm 1. The decoupled numerical PDE procedure
Given the physical solution u(n), the mesh x̃ (n) and the time stepsize Mt at time t = tn.
1. Calculate the new monitor function M (n) =M (n)(tn; x̃ (n); u(n)).
2. Calculate the new mesh x̃ (n+1) by integrating the MMPDEs from t = tn to t = tn + Mt,

using x̃ (n) as initial mesh and keeping the monitor function M constant in time during
the integration.

3. Calculate the physical solution u(n+1) by integrating the physical PDEs from t = tn to
t = tn +Mt, using the mesh x̃ (n+1) and mesh speed ˙̃x(t) = (̃x (n+1) − x̃ (n))=Mt.

Within the decoupled procedure we freeze the coe:cients in system (6) and replace the spatial
derivatives by second-order central di%erence operators. The resulting ODE system is solved by the
implicit Euler method, and for the linearized system of equations the iterative method Bi-CGSTAB
(see [16]) is applied with implicit diagonal preconditioning.
For the reaction–di%usion equation (1) in which s(u; x; y; t) is a nonlinear source term in general,

it is appropriate to make use of an implicit–explicit time-integration method (see [13] for more
details). The main advantage is that solving a nonlinear system, with for instance Newton’s method,
can be avoided, while still having reasonable stability properties, at least for mildly sti% equations.
It must be noted that the reaction-terms in the intended applications are indeed mildly sti%, which
justiAes their explicit treatment. For example, within this class of integrators the Arst-order method
1-SBDF yields: u(n+1) − �MtMu(n+1) = u(n) + Mts(n)(u; x; y; t), where Mu(n+1) is the semi-discretized
approximation of the four second-order derivative terms in Eq. (3). Unfortunately, as analyzed in
[13], this method may perform poorly to reproduce the dominant wavenumber accurately. This type
of error is undesirable because it may lead to incorrect modal growth and hence a plausible-looking,
yet qualitatively wrong solution. A better option for numerically integrating (1) in time is to apply
the second-order method 2-SBDF. This method is recommended in [13] after an intensive numerical
study of reaction–di%usion systems. It allows relatively larger time steps and strongly damps high
frequency errors. The 2-SBDF formula reads

3
2 u

(n+1) − �MtMu(n+1) = 2Mts(n)(u; x; y; t)−Mts(n−1)(u; x; y; t) + 2u(n) − 1
2u
(n−1): (8)

Since at each time step both u(n) and u(n−1) are needed in 2-SBDF, we have applied at the Arst time
step the one-step explicit–implicit Euler method. The linear system Au(n+1) = b behind (8) is again
solved with the iterative method Bi-CGSTAB with implicit diagonal preconditioning. In order to
obtain ‘smoother’ transitions in the mesh, rather than merely using Eqs. (6), an additional Alter (see
also [14]) is applied on the weight functions. Instead of working with Mij, the averaged monitor
values

M̃ ij = 1
4 Mij + 1

8 (Mi+1; j +Mi−1; j +Mi;j+1 +Mi;j−1)

+ 1
16 (Mi−1; j−1 +Mi−1; j+1 +Mi+1; j−1 +Mi+1; j+1)
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are being used in the mesh equations. This weighted sum corresponds with averaging the inSuence
of the Arst spatial derivatives on the mesh points and serves as a tool to decrease the possibility of
numerical mesh distortion.

3. Numerical results

3.1. The Gray–Scott model

Reaction–di%usion models of chemical species can produce a variety of patterns, reminiscent of
those often seen in nature. The Gray–Scott equations model such a reaction. Numerical simulations
of this model were performed in an attempt to And stationary lamellar patterns like those observed
in earlier laboratory experiments on ferrocyanide–iodate–sulphite reactions (for more details on the
background of the model and the chemical reactions we refer to [12]). The chemical reactions for
this particular situation, taken from [12], are described by

U + 2V → 3V;

V → P;

in which U; V and P are chemical species. The system of reaction–di%usion equations for this
situation is given by

ut = �1Mu− uv2 + f(1− u);

vt = �2Mv+ uv2 − (f + k)v; (9)

where �1 and �2 are the di%usion rates in the process, k represents the rate of conversion of V to
P, and f the rate of the process that feeds U and drains U; V and P.
In the 1D numerical experiments the following choices for the model parameters are made: �1 =

10−4, �2 = 10−6, f = 0:024, k = 0:06. The initial conditions are u(x; 0) = 1− 1
2 sin

100()x), v(x; 0) =
1
4 sin

100()x), supplemented with Dirichlet boundary conditions on the domain [0; 1]. We have used
300 mesh points on the spatial domain [0; 1] with a time step of Mt = 0:01. For the adaptivity
parameter � in the weight function we took the value 0.01. The mesh and the solutions of the
PDEs are determined with an accuracy (measured in terms of residual error) of 10−4 and 10−5,
respectively. With these conditions (see Ref. [4]) we expect a splitting of the initial pulse Arst into
two and then into four pulses. Fig. 1 shows the trajectories of the adaptive mesh up to t = 2000
and the solutions at t = 0 and 2000 for u and v. The ability of the adaptive mesh to capture and
follow the splitting process is clearly demonstrated in this Agure. It is worthwhile to mention that
application of a uniform mesh of similar size produces numerical solutions that lag far behind in
the splitting process and Anally even loose their symmetry.
In two space dimensions we start with two block functions

u(x; y; 0) =

{
0:5 if 0:36 x6 0:7 and 0:36y6 0:7;

1 elsewhere;
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Fig. 1. Adaptive mesh solutions for the 1D Gray–Scott model.
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Fig. 2. Adaptive mesh solutions for the 2D Gray–Scott model at t = 1; 50; 100; and 150.

v(x; y; 0) =

{
0:25 if 0:36 x6 0:7 and 0:36y6 0:7;

0 elsewhere;

on the domain [0; 1] × [0; 1]. We choose the same time step, and tolerances as in 1D on a spatial
mesh of 51×51 mesh points with Dirichlet boundary conditions and di%usion coe:cients �1=8·10−5,
�2=4·10−5. Fig. 2 depicts the numerical solutions for �=1 at t=1; 50; 100, and 150. The 2D-splitting
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process of the initial block functions into four spots is illustrated in terms of the Arst component u
and the adaptive mesh.

3.2. The Brusselator

The second model is the so-called Brusselator. This is a very well-studied model for a hypothet-
ical tri-molecular reaction, which was introduced in Brussels in 1971 (for more details see [11]).
The four single reactions are given by

A → U;

B+ U → V + D; Bimolecular reaction:

2U + V → 3U; Autocatalytic trimolecular reaction:

U → E:

Adding the rates of production and loss of the two intermediate species U and V in these reactions,
and assuming all rate constants to be unity, leads to the following simpliAed time evolution equations
for the concentration Aelds U and V :

ut = �1Mu+ A+ u2v− (B+ 1)u;

vt = �2Mv+ Bu− u2v; (10)

where the di%usion coe:cients are �1 = �2 = 10−4 (in 1D) and �1 = �2 = 2 · 10−3 (in 2D), and the
chemical parameters A=1 and B=3:4. This model has also been studied in Ref. [5]. Note that the
smaller the �1- and �2-values are chosen, the steeper the solutions become, and that adaptive meshes
become more and more important.
At the boundary of the domain Neumann conditions are imposed

9u
9n

∣∣∣∣
9�
=
9v
9n

∣∣∣∣
9�
= 0 with � = [0; 1]d:

The initial conditions in 1D and 2D read, respectively, as

u(x; 0) =
1
2
; v(x; 0) = 1 + 5x; u(x; y; 0) =

1
2
+ y; v(x; y; 0) = 1 + 5x: (11)

With these boundary and initial conditions a periodically (with period ≈ 7) moving wave will be
induced. In Figs. 3 and 4 (200 meshpoints) and (51 × 51 meshpoints) we observe this behaviour
both in one- and two-space dimensions. The numerical parameters for these runs were Mt = 0:01,
� = 0:01 in 1D and 1 in 2D, respectively.

4. Summary and future work

In this paper we have applied an adaptive moving mesh method to 1D and 2D reaction–di%usion
models from chemistry. Although the numerical results are very promising there is still much room
to improve the performance of the method. Two of the most important issues in this respect are the
implementation of a variable timestep control and the use of more sophisticated preconditioners for
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Fig. 3. Adaptive mesh solutions for the 1D Brusselator (mesh trajectories: left; solutions at di%erent values between t =0
and right; t = 9).
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Fig. 4. Adaptive mesh solutions for the 2D Brusselator at t = 1; 3; 5, and 11.

the underlying linear systems. Other improvements could be, the development of a time-dependent
and robust adaptivity parameter in the weight function, and a nonuniform evolutionary mesh distri-
bution at the boundary of the domain (instead of Axing the grid there). Investigation of other weight
functions and Altering operators for smoother mesh distributions will certainly improve the adaptive
moving mesh as well, especially, if very steep layers and skew meshes are to be expected.
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