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Abstract

The dynamics of the Liesegang type pattern formation is investi-
gated in a centrally symmetric two-dimensional setup. According to
the observations in real experiments, the qualitative change of the dy-
namics is exhibited for slightly different initial conditions. Two kinds
of chemical mechanisms are studied; in both cases the pattern forma-
tion is described using a phase separation model including the Cahn-
Hilliard equations. For the numerical simulations we make use of an
adaptive grid PDE method, which successfully deals with the compu-
tationally critical cases such as steep gradients in the concentration
distribution and investigation of long time behavior. The numerical
simulations show a good agreement with the real experiments.
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1 Introduction

It is more than 110 years that Liesegang observed and reported an interesting
phenomenon [20]: the precipitate in some simple chemical reactions may not
homogeneously distribute. In the typical experimental setup, one chemical
reagent is uniformly distributed in a gelled medium (called inner electrolyte),
while the other one (called outer electrolyte) diffuses from outside. The initial
concentration of the outer (invading) is chosen to be much larger than that
of inner one. This condition ensures the higher diffusion flux of the outer
electrolyte into the gel. In some circumstances, in the wake of the chemical
front some precipitation bands are formed, following each other. In 1D the
distances between the bands are determined by the geometrical law [16], see
Figure 1. For the description of this phenomenon many models have been
proposed such as models based on simple supersaturation [17] or competitive
particle growth [12, 7] and models based on phase separation [24, 2, 3]. A
general framework for the different models in 1D has been recently published
[27].

As the pattern formation in 2D has recently gained a great interest in
the engineering of microsystems [14], a number of experimental studies have
been performed. Interestingly, different dynamics have been reported for
similar - centrally symmetric - experimental setups: in many cases a regular
Liesegang pattern evolved [18], [19], in other experiments only one moving
precipitation layer was detected [28], [25].

Our aim is to exhibit and reproduce this phenomenon with numerical
simulations and to point out that this can happen using the same material
coefficients with a slight modification of initial conditions.

For a successful simulation procedure we have to choose

• an adequate model of the underlying chemical mechanism

• an effective numerical method for solving the PDE for the evolution.

Among the possibilities mentioned above, we have chosen the phase sep-
aration model proposed in [2], where the time evolution of the precipitate is
described with the Cahn-Hilliard equations, which was originally proposed
in [6].

According to this model, the precipitate segregates into the low and high
density phases if its local concentration reaches a critical threshold (”spin-
odal point”). The corresponding fourth order PDE serves as an accurate
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model: the empirical laws for the Liesegang patterns have been verified by
numerical simulations [2] in a one dimensional setup. The dynamics driven
by the Cahn-Hilliard equations have been analyzed in a series of studies, see
e.g. [1, 5, 4]) and is still in the focus of theoretical investigations. Note that
we investigate the Cahn-Hilliard equation within a reaction-diffusion system.

In the real applications, the regions which are used as a source of one of
the reactants are small compared to the scale of the computational domain.
This results in difficulties in the traditional numerical simulations due to the
high concentration gradient of the outer (invading) electrolyte and precipi-
tate. On the other hand, frequently, pattern formation phenomena have to
be simulated over a relatively long time period. In this way, an overly ac-
curate space discretization or too short time steps can easily result in very
time consuming simulations. Therefore, it is important to apply an accurate
and fast numerical solver, which successfully deals with the above difficul-
ties. Several techniques can improve the computational procedures such as
(i) using appropriate numerical integrators; (ii) using parallel program en-
vironment (supercomputer, cluster, GRID systems [21] or video card using
specially designed program environment (CUDA) [26]), (iii) using appropri-
ate spatial discretization strategies. Moreover, splitting methods [10] and
nonconforming Galerkin methods [11, 31] have been utilized for the numeri-
cal approximation.

A promising alternative is provided by the moving grid (adaptive mesh)
methods which have been applied for the numerical solution of a series of
PDEs in the computational physics. Typical examples are provided by phase
field models describing the dynamics of moving interfaces [13] [30], accu-
rate approximation for convection dominated nonlinear problems [34] and
reaction-diffusion systems involving pattern formation [23]. Motivated its
success, in the present work, we apply a recent adaptive numerical solver
based on a moving grid technique, which deals effectively with all of the
difficulties arising in the modeling of Liesegang phenomena.

2 The model

The basic chemical reaction which results in the pattern formation phe-
nomenon can be described by the simple equation

A + B → C, (1)
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Figure 1: The silver dichromate Liesegang pattern in a test tube. The outer
electrolyte invades from the left end of the tube; the dark regions correspond
yield the precipitate. The concentration of the inner (potassium dichromate)
and outer (silver nitrate) electrolyte are 0.01 mol/L and 1.00 mol/L, respec-
tively.

where A and B yield the inner and the outer electrolyte, respectively and
C denotes the precipitate. For some species, the precipitate C can react
with the excess of A (called redissolution) such that the product S (soluble
complex) is formed:

A + C → S. (2)

As an interesting example we mention the reaction, where

A = NH4OH, B = Co2+, C = Co(OH)2, and S = Co(NH3)
2+

6

and, indeed, further species form as well; for a detailed study, see [29]. Ac-
cording to the phase separation model [24, 2]:

C → Chigh + Clow, (3)

where Chigh and Clow denote the high and the low density fragment of the
precipitate, respectively. Practically, pattern formation means in this case
that we detect the regions with high density and call them precipitation
zones, see Figure 1. The constants kc, kd and λ describe the reaction rate in
(1), (2) and (3), respectively.

In mathematical terms, we denote the concentrations of A,B and C with
a, b and c respectively, depending on time t and spatial variables (x, y). In
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all of the consecutive equations, variables in the subscript denote partial
derivatives. The above chemical reactions (1-3) correspond to the following
system of partial differential equations

at(t, x, y) = Da ∆a(t, x, y) − Ra (4)

bt(t, x, y) = Db ∆b(t, x, y) − Rb (5)

ct(t, x, y) = −λ ∆(ǫ c(t, x, y) − γ c3(t, x, y) + σ∆c(t, x, y)) + Rc, (6)

which describe the time evolution of a, b and c, respectively. Da and Db de-
note the diffusion coefficients of A and B, respectively. The operator ∆ refers
to the space coordinates x and y and the terms Ra, Rb and Rc correspond to
the chemical reactions: either to (1) or to (1-2). The choice of the functions
Ra, Rb and Rc will be specified in Section 4.

The differential operator on the right hand side of (6) describes the dy-
namics of the phase separation given in (3) by the Cahn-Hilliard equation.
For an explanation of the material coefficients λ, ǫ, γ and σ we refer to [2].
In the numerical simulations, we take all these four constants equal to one.
For a discussion on the choice of realistic parameters we refer to [24].

In the mathematical analysis of the Cahn-Hilliard equations on a domain
Ω the Ljapunov functional

E(c)(t) =

∫

Ω

1

4
(c2 − 1)2 +

γ

2
|∇c|2 dΩ

plays a crucial role. From the point of view of physics it can be recognized
as free energy. In the absence of source term , i.e. for Rc = 0 in (6), we
have ∂tE(c)(t) < 0, which determines the evolution of c. This case has been
extensively studied in [1, 4, 5]. In our case, however, a nontrivial source term
Rc gives rise to an interesting dynamics.

We simulate the reaction in a radially symmetric setup, in a ring with
an inner radius r0 and outer radius R0, where the unknown concentrations
depend only on the distance r =

√

x2 + y2 measured from the origin. Accord-
ing to the radial symmetry, a(t, x, y) = a(t, r, Φ) = a(t, r) gives the spatial
dependence of a. Using the identity

∆a(x, y) =
1

r
[[rar]r +

1

r
aΦΦ] =

1

r
ar + arr,

and a similar, slightly more complicated, one for the operator ∆2 in PDE (6)
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we can rewrite the equations in (4-6)

at =
Da

r
[ar + rarr] − Ra (7)

bt =
Db

r
[br + rbrr] − Rb (8)

ct =

[

−
1

r
−

1

r3
+

3

r
c2

]

cr +

[

−1 +
1

r2

]

crr + [c3]rr −
2

r
crrr − crrrr + Rc,(9)

which are investigated in the interval (r0, R0) for 0 < t < T and all of the
unknown concentrations depend on t and r.

In the experimental setup, initially, the species A is placed into a small
disk D0 with radius r0, while a homogeneous solution containing the species
B is placed into the ring outside of D0. The constants −1 and 1 refers to the
low and the high density phase of the precipitate, respectively. Indeed, this
corresponds to the deviation from the mean concentration, see [24]. Accord-
ingly, we equip (7-9) with the initial conditions

a(0, r) = 0, b(0, r) = 1 and c(0, r) = −1 for r ∈ (r0, R0).

In the real experiments, the continuous inflow of A is ensured at the boundary
∂D0 such that here the concentration of A is fixed and is one magnitude
larger than that of B. It is assumed that the invading species A turns into
precipitate such that no outflow occurs at the other boundary of the ring. In
practice, the species B is often placed into a gel such that it can not leave
this region. The same is valid for the precipitate C such that we apply mixed
boundary condition for A and homogeneous Neumann boundary conditions
for B and C as follows:

a(t, r0) = 100, ar(t, R0) = 0 for t ∈ (0, T )

br(t, r0) = br(t, R0) = 0 for t ∈ (0, T )

cr(t, r0) = cr(t, R0) = 0 for t ∈ (0, T )

dr(t, r0) = dr(t, r0) = 0 for t ∈ (0, T ),

where d = crr is an “artificial” PDE variable denoting the second derivative
of the precipitate concentration c(t, r). Introduction of the function d makes
the PDE system better balanced for the numerical formulation as described in
the next section, since we now have four PDEs of second-order, instead of two
PDEs of second and one of fourth order. Imposing the last condition means
that we take, in fact, the third derivative of c zero at the two boundaries. A
natural and consistent initial condition for d(t, r) is: d(0, r) = 0.
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3 An adaptive moving grid technique

In the simulations, the concentration gradient is high near those locations,
where the high concentration phase can be observed. For an accurate nu-
merical approximation, therefore one has to apply a very fine spatial grid.
On the other hand, at those locations, where the concentration of A is low
or the low density of C does not result in phase separation, a coarse grid
would be satisfactory. The locations with high density of C are moving as
the precipitation system evolves such that a proper solver should operate
with an adaptive moving grid.

3.1 Transformation of the PDE system to new coordi-
nates

The adaptive moving grid is based on an additional coordinate transforma-
tion of the form r = r(θ, ρ), t = θ, with Jacobian J = rρ, to obtain the
following PDE system in the new coordinates, i.e. a, b, c and r depend now
on the variables θ and ρ:

J aθ − aρ rθ = Da(
aρ

r
+ (

aρ

J
))ρ − JRa (10)

J bθ − bρ rθ = Db(
bρ

r
+ (

bρ

J
))ρ − JRb (11)

J cθ − cρrθ = [−
1

r
−

1

r3
+ 3

c2

r
]cρ − J d +

1

r2
cρ (12)

+ 3(
c2

J
cρ)ρ −

2

r
dρ − (

dρ

J
)ρ + J Rc (13)

0 = (
cρ

J
)ρ − J d. (14)

The transformation r(θ, ρ) : [0, T ] × [0, 1] −→ [0, T ] × [r0, R0] is defined in
the next section as a solution of a so-called adaptive grid PDE. Note that
in the transformed coordinates, in which the PDE solution is expected to
behave ‘mildly’ compared to the original coordinates, a uniform grid with
∆ρ = constant = C̄ is chosen.
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3.2 The adaptive grid PDE method

To obtain a smooth spatial grid distribution and also smooth grid trajectories
in the time direction, we let the adaptive grid transformation r(θ, ρ) satisfy
the following PDE [33]:

τs[Jθ ω]ρ + [S(J ) ω]ρ = 0, (15)

with r(θ, 0) = r0, rρ(θ, 0) = 0, r(θ, 1) = R0, rρ(θ, 1) = 0 and initial condition
r(0, ρ) = r0 + (R0 − r0)ρ, i.e., a uniform starting grid. Here, the spatial
smoothing operator S is defined by

S = I − σ(σ + 1)C̄2 ∂2

∂ρ2
,

with I the identity operator and σ > 0 a spatial smoothing constant. Further,
τs in (15) represents a temporal smoothing constant, which may be taken
≈ 10−3× the ‘critical’ time-scale in the simulation (small enough to capture
rapid solution changes in the time-direction). Finally, the function ω is a
monitor function given by

ω(θ, ρ) = α(θ) + |cr|, α(θ) =

∫ R0

r0

|cr| dr. (16)

Remarks:

1. For τs = σ = 0 (i.e. switching off all smoothing), the adaptive grid
PDE (15) reduces to a boundary-value representation of the well-known
equidistribution principle

(J ω)ρ = 0 ⇔ (rρ ω)ρ = 0, (17)

with boundary conditions r(θ, 0) = r0, r(θ, 1) = R0 and initial con-
dition r(0, ρ) = r0 + (R0 − r0)ρ. A discretization of (17) gives the
equidistribution relation

∆riωi = constant,

where ∆ri denotes distance of the ith and i + 1th grid points.
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It can be proved that for the non-uniform grid arising from the dis-
cretization of the adaptive grid PDE (15), the following properties hold:

1) J > 0, ∀ θ > 0 (monotonicity of the grid points is preserved)

2) O(1) = σ
σ+1

≤ ∆ri+1

∆ri

≤ σ+1
σ

= O(1), ∀i and ∀ θ > 0.

(18)
However, taking too large values for τs or σ results in an unwanted
situation namely:

3) τs → ∞ ⇒ rθ → 0, ∀ θ > 0 (a non-moving grid)
4) σ → ∞ ⇒ J → 1, ∀ θ > 0 (a uniform grid).

(19)

The time-dependent adaptivity parameter α(θ) serves to smoothly dis-
tribute the gridpoints between parts of the domain with high spatial
activity (|cρ| ≫ 1) and low spatial activity (|cρ| ≪ 1). In fact, the
choice for α(θ) in (16) gives a grid distribution for which approximately
50% of the grid points positioned in the region where the first spatial
derivative of the precipitate c(t, r) is large and the other half in the
remaining part of the domain. Property 2) in (18) with σ = O(1), is
of importance to keep the non-uniform grid ‘quasi-uniform’, i.e. the
same formula, ∆ri+1

∆ri

= 1 + O(∆ri) for each point of time during the
simulation. For details on the theoretical background of these proper-
ties and the importance of the additional smoothing, we refer to [8, 32]
and the references therein. The PDE system in equations (10-14) in
combination with (15) is semi-discretized with central finite differences
in the ρ-coordinate. This results in a large nonlinear system of 5N
ordinary differential equations (ODEs), where N denotes the number
of spatial gridpoints: N = 1

∆ρ
. For the efficient and stable numerical

time-integration in the θ-direction BDF-methods are used with vari-
able stepsize and variable order (DASSL, see [22]). In all numerical
experiments we took, unless otherwise specified, the following values
for the numerical parameters: τs = 0.1, σ = 2, N = 400 and the time-
tolerance in DASSL = 10−6. For the derivation of (15) and the proof
of the statements in (18) see [33].

2. Note that the smoothing (filtering) procedure described in [],[] can be
used in higher dimensions as well, while the procedure used in the
present paper is restricted to space dimension one. Accordingly, the
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assumption on the radially symmetric setup results in a spatially one-
dimensional system of PDEs. At the same time, the method is sophis-
ticated and provides a guarantee that a smooth grid will be obtained
with the properties as mentioned in (18). Also, the applicability of
the present method extends to systems of PDEs including higher order
derivatives.

4 Simulation results

We perform the simulations for different values r0 of the initial radius, fo-
cussing to the case, when this is small compared to the scale of the ring
corresponding to an initial point source. This results in large coefficients in
(7-9), which can affect the accuracy of the computations. Also, the structure
of the formed precipitate can highly depend on the value of r0 [19, 25].

4.1 Simulation based on the reaction (1)

First we investigate the reaction-diffusion system in absence of the redisso-
lution step (2):

Ra = Rb = Rc = kcab,

with kc = 1. In the following simulations, computations have been performed
on the interval (r0, r0 + 300) in the time range t ∈ [0, 6000]. The results for
various initial radii r0 at the final stage t = 6000 are shown in Figure 2.
Comparing the results in Figure 3 one can see that for r0 = 0.01 a single
thick precipitation zone evolves. A qualitatively similar evolution can be
observed for r0 = 0.1. At the same time, for r0 = 1 and r0 = 10 consecutive
precipitation zones appear with an increasing thickness similarly to a regular
one dimensional Liesegang pattern. This corresponds to the experimental
observations, see Figure 1.

Note that indeed, we consider a two-dimensional setup such that the
classical empirical laws [24], [15], [9] describing the Liesegang patterns are
not valid any more.

For a complete description of the reaction, we have also depicted the
concentration of the species A and B at the final stage, shown in Figure 3.
One can see that the species B is depleted in the region where the phase
separation occurred and a relatively small concentration of A can evoke the
reaction.
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Figure 2: The precipitation pattern in the simulations for r0 = 10, r0 =
1, r0 = 0.1 and r0 = 0.01, respectively at t = 6000. x axis : distance
from the initial interface of the reactants, y axis: scaled concentration of the
precipitate.
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Figure 3: Concentration of the reactants A and B for r0 = 10, r0 = 1,
r0 = 0.1 and r0 = 0.01, respectively at t = 6000. x axis : distance from the
initial interface of the reactants, y axis: scaled concentration of the reactants.
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Figure 4: Second derivative d of the concentration function c of the precip-
itate for r0 = 10, r0 = 1, r0 = 0.1 and r0 = 0.01, respectively at t = 6000.
x axis: distance from the initial interface of the reactants, y axis: second
derivative of the concentration of C.

The sharp boundary of the precipitation zone is characterized by the
second derivative of the concentration of the precipitate, which are shown
in Figure 4 for various values of the initial radius r0. The time evolution
of the precipitate system and the performance of the adaptive moving grid
technique can be seen in Figure 5. Here, at time t, the horizontal sections
indicate the grid points in the tessellation of the interval (r0, r0+300). As the
system evolves, the regions with the fine grid move such that they are always
present at the interface of the precipitation zones. These zones become dark
in the subfigures. Initially, it takes some time until the grid system is built
such that an unstructured dark zone can be observed. During the reaction
some precipitation zones can form (see the second subfigure in Figure 5 at
time ≈ 4100) and can disappear (see the first and the second subfigure in
Figure 5 at time ≈ 5200).
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Figure 5: Time variation of the computational grid during the simulation
between t ∈ [0, 6000] for r0 = 10, r0 = 1, r0 = 0.1 and r0 = 0.01, respectively.

In the adaptation procedure, the grid transformation r(θ, ρ) is highly
influenced by the monitor function ω, which depends on the adaptive pa-
rameter α(θ). This function is plotted for the different initial radii in Figure
6. Comparing with Figure 5 one can observe that the parameter is increasing
when a new precipitation zone forms and decreasing when a zone disappears.

Another point in favor of the adaptive moving grid technique are the
relatively low computational costs compared with a uniform (fixed in time)
grid. For a comparison in terms of efficiency and accuracy, we refer to the
figures in Table 1. There, we have displayed for different numbers of grid
points N (both for the adaptive grid and the uniform grid case) not only the
CPU time, but also a series of characteristic values of a typical numerical
experiment. In the last three columns, respectively, the overshoot (above
the value of 1), the width of a typical zone and the position on the r-axis of
this zone are shown. To have a regular pattern structure, we took r0 = 200,
R = 1200 and point of time t = 60000. We can see that for N = 600
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Figure 6: Time variation of the adaptive parameter α(θ) on the time interval
[0, 6000] for r0 = 10, r0 = 1, r0 = 0.1 and r0 = 0.01, respectively.

the adaptive results correspond approximately with the uniform results for
N = 3000. For this case, the adaptive run was almost twice as fast. The
uniform grid case with N = 1200 resulted in very inaccurate solutions which
we did not evaluate. These are denoted by the symbol XXX in Table 1.

4.2 Modeling of redissolution scenario

For a more detailed model, we incorporate also reaction step (2) correspond-
ing to the redissolution of the precipitate. It can occur in the excess of the
outer electrolyte. Accordingly, the reaction terms in (7-9) are

Ra = kcab − ksa(c + 1), Rb = kcab and Rc = kcab − ksa(c + 1).

In the corresponding simulations (see Figures 7 and 8), we have used kc = 1
and different parameters ks = 0, ks = 0.005, ks = 0.0001, corresponding
to the reaction rate in (2). One can observe that the precipitation zones
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N Method CPU time Overshoot Width Position

400 Adaptive 3m 21s 0.0109 16 572
600 Adaptive 4m 50s 0.0036 24 562
800 Adaptive 6m 32s 0.0017 22 565
1200 Uniform 2m 24s XXX XXX XXX
1800 Uniform 3m 55s 0.0098 112 598
2400 Uniform 5m 52s 0.0057 118 586
3000 Uniform 7m 44s 0.0038 20 578
6000 Uniform 17m 0s 0.0011 21 568

Table 1: A comparison of the accuracy and efficiency between adaptive mov-
ing grid and uniform grid results for one of the described cases.

will move during the reaction. To keep track the corresponding dynamics
precisely, it is essential to apply a moving grid, which becomes dense only at
the interface of the low and high phase regions of the precipitate.

5 Discussion

In this paper, we exhibited the dependence of the dynamics of Liesegang
type precipitation systems on the initial condition: in some cases a regular
precipitation system evolves in other cases only one moving precipitation
front emerges. This is possible in case of the same material coefficients with
an appropriate choice of the radius of the region where one of the reactants
is placed. To our best knowledge this transition could not yet been repro-
duced numerically. The simulations need a special care: steep concentration
gradients require locally an accurate spatial discretization locally, and these
regions has to be shifted or even cancelled as the system evolves. The method
presented here is able to deal with different chemical mechanism as the re-
dissolution scenario and has a clear advantage in terms of the computation
costs.

16



Figure 7: Patterns as a function of space and time for different values of kd

in the reaction terms Ra and Rc in the PDE model for the redissolution.
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Figure 8: Grid history for different values in case of redissolution.
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