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Abstract. An adaptive moving mesh finite difference method is presented to solve
two types of equations with dynamic capillary pressure effect in porous media. One is
the non-equilibrium Richards Equation and the other is the modified Buckley-Leverett
equation. The governing equations are discretized with an adaptive moving mesh fi-
nite difference method in the space direction and an implicit-explicit method in the
time direction. In order to obtain high quality meshes, an adaptive monitor function
with directional control is applied to redistribute the mesh grid in every time step,
then a diffusive mechanism is used to smooth the monitor function. The behaviors
of the central difference flux, the standard local Lax-Friedrich flux and the local Lax-
Friedrich flux with reconstruction are investigated by solving a 1D modified Buckley-
Leverett equation. With the moving mesh technique, good mesh quality and high nu-
merical accuracy are obtained. A collection of one-dimensional and two-dimensional
numerical experiments is presented to demonstrate the accuracy and effectiveness of
the proposed method.

AMS subject classifications: 35C07, 35Q35, 65M50, 74S20, 76S05

Key words: Relaxation non-equilibrium Richards equation, modified Buckley-Leverett equation,
saturation overshoot, traveling wave analysis, moving mesh finite difference method.

1 Introduction

For the past several decades, since the observations of saturation overshoot and gravity
driven fingers [1–4], there have been a great deal of experimental and theoretical stud-
ies on the mechanism and modeling of such phenomena. Stauffer [5], Hassanizadeh
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and Gray [6], Kalaydjian et al. [7] proposed a dynamic (non-equilibrium) relationship
between capillary pressure and saturation to explain the occurrence of non-monotone
saturation and capillary pressure when water is injected into initially dry sandy porous
media. Eliassi and Glass investigated three additional forms referring to as a hypodiffu-
sive form, a hyperbolic form and a mixed form in [8], they obtained saturation overshoot
successfully by using the hypodiffusive form [9]. Nieber et al. [10], Chapwanya and
Stockie [11] investigated the gravity-driven fingers by supplementing the Richards equa-
tion with the dynamic capillary pressure-saturation relationship, as well as including
hysteretic effects. Their results demonstrate that the non-equilibrium Richards equation
is capable of reproducing realistic fingers for a wide range of physically relevant param-
eters. Inspired by fingering instabilities in the flow of thin films, Cueto-Felgueroso and
Juanes [12] put forward a phase field model using the idea of including the effect of a
macroscopic interface in the mathematical description of unsaturated flow. Their model
predictions agreed well with the lab measurements [4]. In the above mentioned refer-
ences, most of models can be described as extensions to the Richards equation, besides,
other approaches characterizing the saturation overshoot have also been investigated.
Refs. [13,14] studied a generalized theory by introducing percolating and non-percolating
fluid phases into a traditional mathematical model. DiCarlo et al. [15] developed a multi-
phase, fractional flow approach to describe the physics behind the displacement front
that includes the viscosity of the gas. Refs. [16–18] simulated saturation overshoot by
incorporating the dynamic capillary pressure with a traditional fractional flow equation.
Their results suggest that the non-equilibrium fractional flow equation has the ability to
model saturation overshoot.

Among the proposed theories, two models incorporating the dynamic capillary pres-
sure relationship have attracted considerable interest in recent years. One is the relax-
ation non-equilibrium Richards equation (RNERE), and the other is the modified Buckley-
Leverett equation (MBLE). Results on stability, traveling wave (TW) solutions, global
existence, phase plane analysis and uniqueness of weak solutions are given in [19–24].
Numerical simulations [10, 11, 21, 25, 26] of the RNERE and the MBLE show that with
appropriate parameters, both models will generate non-monotonic distribution of satu-
ration, and the RNERE can become unstable in 2D when the flow profiles are sufficiently
non-monotonic [20] which agree with the TW analysis and stability result.

In order to numerically solve these non-equilibrium equations, a variety of numeri-
cal methods have been developed in literature. Peszynska and Yi [27] proposed a cell-
centered finite difference method and a locally conservative Eulerian-Lagrangian method,
but they noticed that such methods may cause instabilities in convection-dominated
cases and for large dynamic effects. A finite difference method which combined a min-
mod slope limiter based on the first order upwind and Richtmyer’s schemes was used
by van Duijn et al. [21]. The solutions obtained by this scheme agreed well with the
TW results. Wang and Kao [28] extended the second and third order central schemes to
capture the nonclassical solutions of the MBLE. Kao et al. [25] split the MBLE into a high-
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order linear equation and a nonlinear convective equation, and then integrated the linear
equation with a pseudo-spectral method and the nonlinear equation with a Godunov-
type central-upwind scheme. The computed solutions demonstrate that the higher-order
spatial reconstruction using fifth-order WENO5 scheme gives more accurate numerical
solutions. Hong et al. [29] adopted a fourth-order central difference scheme to resolve
the spatial resolution and a standard fourth-order Runge-Kutta scheme to march the re-
sulting algebraic system in time, they observed high wave number oscillatory waves
under certain parametric conditions. But later work by de Moraes et al. [30] shows that
those oscillatory waves do not satisfy threshold for the existence of non-monotonic wave
fronts [21]. Thus they suggested to use schemes with nonlinear numerical stability prop-
erties to capture the different shock waves, as well as rarefaction waves.

When capturing solutions of the two-phase flow models numerically, one has to deal
with the difficulty related to the steep wave fronts or shocks. Thus, extremely dense
meshes are required at the steep fronts or shocks in order to produce physically correct
solutions. To overcome this difficulty, several adaptive methods have been developed in
the past. Hu and Zegeling [31] used a moving mesh finite element method to discretize
the RNERE in the space direction. With the moving mesh technique, high mesh quality
and accurate numerical solutions are obtained successfully. Dong et al. [32] combined a
mixed finite element method and a finite volume method to handle the nonlinearities of
the governing equations efficiently. By adopting the moving mesh method, they obtained
accurate numerical solutions with fewer computational resources. Refs. [17, 26] studied
the MBLE with adaptive moving mesh finite difference methods, their results show that
to achieve the same accuracy, the adaptive methods need around a factor of 4-10 fewer
grid points than the uniform grid case.

Since the moving mesh methods greatly outperform the uniform mesh methods, the
objective of the present work is to study the numerical solutions of the non-equilibrium
equations using an adaptive moving mesh finite difference method. This method is based
on an MMPDE approach [33] which works for a general spatial dimension, but we focus
only in 1D and 2D in this paper. In order to distribute the mesh points reasonably, we
adopt an adaptive monitor function with directional control [34] and a smoothing tech-
nique base on a diffusive mechanism [35].

The other parts of the paper are organized as follows. Section 2 introduces the one-
phase RNERE and the two-phase MBLE. For verification of the numerical solutions, we
also present a review of the TW analysis and the stability results. In Section 3 we will
present the moving mesh strategy based on a quasi-Lagrangian approach and discretize
the system with a finite difference method in the space direction and an IMEX method in
the time direction. In Section 4, several one-dimensional and two-dimensional numerical
experiments are carried out to demonstrate the effectiveness of the proposed scheme.
Finally, Section 5 ends with conclusions and further comments.
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2 Background

In this section, we derive the mathematical models describing the two-phase flow in a
homogeneous porous media. For a more detailed derivation, we refer to [16, 36].

Consider a homogeneous porous medium with a constant porosity φ and a constant
intrinsic permeability K. One formulation of the traditional macroscopic theory starts
from the fundamental balance laws of continuum mechanics for two phases (the wetting
phase and the non-wetting phase) inside the porous medium. Denote the saturation
of the wetting phase as u, then for a fully saturated porous medium, the saturation of
the non-wetting phase is 1−u. In a two-dimensional situation, the mass conservation
equations for the two phases read

∂(φρwu)

∂t
+∇·(ρw~vw)=0, (2.1)

∂(φρn(1−u))

∂t
+∇·(ρn~vn)=0, (2.2)

where ρα and ~vα,α=n,w denote the density and the volumetric velocity of each phase.
Let z be the vertical coordinate taken as positive upward, then Darcy’s law reads

~vα=− kr,αK

µα
(∇pα+ραg~ez),

=−λα(∇pα+ραg~ez), α=n,w,

(2.3)

where g is the gravitational acceleration constant,~ez is the unit vector in the z direction,
krα, µα, pα and λα are the relative permeability function, viscosity, pressure and mobility
of phase α, respectively. Under non-equilibrium conditions, Stauffer [5], Hassanizadeh
and Gray [6], Kalaydjian [7] proposed that the phases pressure difference pn−pw can
be written as a function of the equilibrium capillary pressure minus the product of the
saturation rate of the wetting phase with a dynamic capillary coefficient τ [Pa s]:

pn−pw =Pc(u)−τ
∂u

∂t
, (2.4)

where Pc modeling the capillary pressure - saturation relationship under an equilibrium
condition, is a smooth and decreasing function of saturation u, and τ can be explained as
a relaxation time. We refer to [37] for a review of experimental work on dynamic effects
in the pressure-saturation relationship.

2.1 Basic equations

2.1.1 The RNERE

First, we consider a one phase flow model. When the density of the wetting phase (e.g.
water) is much larger than that of the non-wetting phase (e.g. air), it is suggested [36] to
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consider the case ρn = 0, pn = 0 and ~vn = [0,0]T as a first approximation. Then the non-
wetting phase vanishes from the problem and one is left only with the wetting phase.
Assuming ρw is constant, combining the mass equation (2.1), Darcy’s law (2.3) and the
dynamic capillary pressure relationship (2.4) gives the RNERE







∂u

∂t
− ∂

∂z

( 1

φ
λwρwg

)

+∇·
[ 1

φ
λw∇p

]

=0,

p=Pc(u)−τ
∂u

∂t
.

(2.5)

Substituting the pressure equation into the saturation equation, we obtain

∂(φu)

∂t
− ∂

∂z
(λwρwg)+∇·

[

λw∇
(

Pc(u)−τ
∂u

∂t

)]

=0. (2.6)

For a simplification of the notation we write (2.6) as

∂u

∂t
+

∂

∂x
F(u)+

∂

∂z
G(u)+∇·[D(u)∇u]−τ∇·

[

H(u)∇∂u

∂t

]

=0, (2.7)

where

F(u)=0, G(u)=− 1

φ
λwρwg,

D(u)=
1

φ
λwP′

c(u), H(u)=
1

φ
λw.

2.1.2 The MBLE

When the two phases (e.g. water and oil) are incompressible, define the total velocity
~vT =~vn+~vw =[vx

T ,vz
T]

T and the fractional flow rate of the wetting phase fw = λw
λw+λn

, then
the velocity of the wetting phase can be expressed by

vw = f [vT+λn(∇(pn−pw)−(ρw−ρn)g)]. (2.8)

Substituting (2.8) into (2.1) and incorporating (2.4), we can get a two-phase MBLE as (2.7),
with

F(u)=
1

φ
fw(u)v

x
T, G(u)=

1

φ
fw(u)[v

z
T−λn(u)(ρw−ρn)g],

D(u)=
1

φ
λn(u) fw(u)P′

c(u), H(u)=
1

φ
λn(u) fw(u).

2.2 Traveling wave analysis and non-monotonic solutions

In this section we apply the TW analysis to show the behavior of the wetting front for
various values of τ for the RNERE and the MBLE. The analysis is performed in one-
dimension instead of two-dimensions.
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2.2.1 Traveling wave analysis of the RNERE

In the z-direction, the RNERE reads

∂u

∂t
+

∂G(u)

∂z
+

∂

∂z

[

D(u)
∂u

∂z

]

−τ
∂

∂z

[

H(u)
∂2u

∂z∂t

]

=0. (2.9)

Consider a TW solution connecting u− and u+ (u+> u−), by introducing the TW coor-
dinate η= z−st and substituting the TW solution u(η) into (2.6) we obtain a third order
ordinary differential equation (ODE)







−su′+[G(u)]′+[D(u)u′]′+sτ[H(u)u′′]′=0,

u(±∞)=u(±), u+>u−∈ [0,1],

u′(±∞)=u′′(±∞)=0,

where prime denotes differentiation with respect to η, the boundary conditions of the
ODE are obtained by the definition of TW solutions. Integrating this equation over
(−∞,η) yields the second-order ODE:

{

−s(u−u−)+[G(u)−G(u−)]+D(u)u′+sτH(u)u′′=0,

u(±∞)=u±,
(2.10)

with s determined by the Rankine-Hugoniot condition

s=
G(u+)−G(u−)

u+−u−
.

Rewrite (2.10) as a first order system of ODEs







u′=v,

v′=
1

sτH(u)

[
s(u−u−)−[G(u)−G(u−)]−D(u)v

]
.

(2.11)

This system has two equilibria:

(u,v)=(u+,0), (u,v)=(u−,0).

The Jacobian of (2.11) reads

A=

[
0 1

s−G′(u)
sτH(u)

− D(u)
sτH(u)

]

,

and has eigenvalues

λ±=
1

2sτH(u)

[

−D(u)±
√

(D(u))2−4sτH(u)(G′(u)−s)
]

. (2.12)
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Figure 1: TW solutions (left) and phase plane plots (right) obtained with τ=0.08, τ=0.12, τ=0.5.

For the RNERE (2.9), TW solutions are possible whenever u+> u−. From (2.12) we
can get the classification of the two equilibria. The equilibrium (u−,0) is a saddle and
the equilibrium (u+,0) is either an unstable node or a spiral since G′(u+)> s, where the
critical value of the dynamic coefficient is defined as

τs =
D(u+)2

4sH(u)(G′(u+)−s)
. (2.13)

When τ > τs, the equilibrium (u+,0) is a spiral, which means the saddle point (u−,0)
is connected to the spiral point (u+,0). Fig. 1 depicts this situation in terms of the TW
profiles (left) and phase plane plots (right) with the following choice of functions and
parameters:

G(u)=−uα, D(u)=−βuα−β−1, H(u)=uα, β=0.25, α=3,

u+=0.5, u−=0.05.
(2.14)

For this choice, (2.13) with u+ gives τs = 0.0843. If τ< τs, the TW solution varies mono-
tonically (red solid line). With the increment of τ>τs, the TW profile becomes more and
more non-monotonic (green dashed and blue dash dotted lines).

2.2.2 The stability of the RNERE

The stability of the RNERE has been discussed in [19, 20, 38]. In a 2D situation, Ref. [19]
pointed out that the wetting front for the RNERE is conditionally stable, i.e. stable for
high frequency perturbations and unstable otherwise. In this section, we give a summary
of the stability results presented in [20].

The stability analysis is based on imposing a small perturbation to the basic TW so-
lution of (2.5). If the perturbation grows then the flow is unstable. In a 3D domain, the
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perturbed TW solutions are described as the sum of the basic solutions and the perturba-
tions:

u(x,y,ξ,t)=u0(ξ)+ǫ0eiωxx+iωyy+ktu1(ξ)+O(ǫ2
0), (2.15)

p(x,y,ξ,t)= p0(ξ)+ǫ0eiωxx+iωyy+kt p1(ξ)+O(ǫ2
0), (2.16)

where u0(ξ) and p0(ξ) are the basic traveling solutions of (2.5), ǫ0 controls the magni-
tude of the perturbation, i=

√
−1, ω =ω2

x+ω2
y is the wave number of the perturbation

with ωx and ωy being the wave numbers in the x– and y–directions respectively. The
functions u1(ξ) and p1(ξ) describe the variations of solutions and vanish at ξ=±∞. The
growth factor is denoted by k: if k is positive then the perturbation grows, otherwise it
diminishes.

By substituting (2.15) into (2.5) and dropping the terms of order ǫ2
0 and higher, the

resulting perturbation equations are obtained for u1 and p1:

dA

dξ
+ω2K(u0)p1=−ku1,

vτ0
du1

dξ
+

(

P′(S0)+v
∂τ(u0,p0)

∂u

du0

dξ

)

u1+

(

v
τ(u0,p0)

∂p

du0

dξ
−1

)

p1=−kτ0u1,

(2.17)

where A is the flux perturbation given by

A=−K(u0)
dp1

dξ
−K′(u0)

(

1+
dp0

dξ
u1

)

+su1,

and s is the velocity of the wetting front

s=
K(u+)−K(u+)

u+−u−
.

Nieber et al. [20] numerically solved the spectral problem (2.17) for various values
of τ and ω. From Fig. 7 in [20], it is observed that when τ is small enough, the growth
factor is negative for all wave numbers and therefore the saturation profile is stable. With
increasing τ, the growth factor increases from negative to positive for wave numbers that
are not too large. These results on the conditional stability of the RNERE show that the
solution can be unstable if the parameters fall within a specified range.

In Section 2.2.3, we will investigate the stability of the RNERE by numerically solving
(2.6) with perturbations and see whether we can observe a comparable behavior for the
conditions under which perturbations can grow.

2.2.3 Computation of the growth factor of RNERE

In numerical simulations, for the purpose of examining the unstable behavior of the
RNERE, we add a perturbation to the saturation field at t= 1

2 Tend as

u=u0+ǫ0cos(iωx)
∂u0

∂z
,
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Figure 2: Growth factor vs. characteristic wave number for the RNERE for various values of τ (left); maximum
difference between the perturbed and unperturbed saturation profiles and corresponding fitting curves as func-
tions of time (blue: a growing perturbation with τ=0.6, ω=1, fitted curve y=0.00016e0.0496t; red: a declining

perturbation with τ=0.6, ω=6, fitted curve y=0.00039e−0.0997t) (right).

where u0 is the unperturbed solution computed at 1
2 Tend, ω is the wave number in the

x-direction. The perturbation to the saturation is the product of a perturbation in the
z-direction and a cosine shape perturbation in the x-direction.

In practice, for simplicity only integer values of ω are considered and the RNERE
is solved in one period, which means for wave number ω0, we set ω = 1 and solve the

problem in the physical domain [0,2π/ω0]×[0,4]. The first order derivative ∂u0
∂z is approx-

imated using the central difference scheme. By solving the RNERE with the perturbed
saturation we can determine whether the amplitude of the perturbation increases or de-
creases in time. The RNERE (2.6) with functions and parameters (2.14) is solved from
t=0 to Tend=12, first with the unperturbed saturation and then with the perturbed satu-
ration. By subtracting the unperturbed saturation from the perturbed saturation we can
get the maximum growth difference. The stability analysis in Section 2.2.2 shows that
the evolution of the perturbation has an exponential change, thus we use an exponential
least squares fit of the data points to determine the growth factor.

In Fig. 2 (left) we plot the computed relationship between the maximum growth factor
k0 and the wave number ω for different values of τ. It clearly shows similar behavior as
the theoretical plot in Fig. 7 in [20]. When τ is small, the growth factor is negative for
all wave numbers. With the increase of τ, the growth factor becomes positive for small
wave numbers and the maximum growth factor increases as τ increases. In Fig. 2 (right)
we plot the data points of the maximum growth difference together with the exponential
fitting curves. We can see that the exponential function fits the maximum difference quite
well.
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2.3 Traveling wave analysis of the MBLE

The features of the MBLE are richer than the RNERE. In the two-phase situation, the flux
function G(u)= 1

φ fw(u)[vz
T+λn(u)(ρw−ρn)g] is usually a convex-concave function which

introduces an additional difficulty to the TW analysis. This case has been extensively
investigated in Refs. [21,23,39], where for a fixed value of u−, the dependency between τ
and the value u+ is analyzed. For the MBLE the existence of the TW depends on τ. Here
we consider 0<u−<u+<1, and let uI be the unique inflection point of the flux function
G(u), we summarize the results as obtained by [21]. For the details of the TW analysis,
we refer to [21].

Similar to the TW analysis of the RNERE, the 1D MBLE in the z-direction also has the
form (2.9) and can be transformed to the ODE (2.10). Consider the following options of
G(u), D(u) and H(u):

G(u)=
u2

u2+M(1−u)2
, D(u)=−ǫ, H(u)=ǫ, (2.18)

then the results obtained by Ref. [21] can be summarized as follows.
When u0∈[0,uI), it is proved that there is a constant τ∗ such that for all τ∈[0,τ∗], there

exists a unique solution of (2.10) connecting u+=uα and u−=u0, where uα is the unique
root of the equation

G′(u)=
G(u)−G(u0)

u−u0
.

When τ>τ∗, there exists a unique constant ū>uα, such that (2.10) has a unique solution
connecting u+= ū and u−= u0. For u−= u0 < u+= uB < ū(τ), the solution of (2.10) will
exist only if uB ∈ (u0,u), where u is the unique root in the interval (u0,ū) of

G(u)−G(u0)

u−u0
=

G(ū)−G(u0)

ū−u0
.

When τ > τ∗ and uB ∈ (u,ū), there is no TW solution of (2.10) connecting u+ = uB and
u− = u0. In this situation, the solution profile is non-monotonic, two TWs are used in
succession: one from u+=uB to u−= ū and one from u+= ū to u−=u0. For any uB∈(u,ū)
and τ>τ∗, there exists a unique solution of (2.10) such that u+=uB, u−= ū.

For a given ū > uα, an algorithm to determine the value of τ is presented in Ref.
[21]. This is based on the following concept, invert the function u(η) and define the new
dependent variable w(u)=−u′(η(u)), which satisfies

sτH(u)ww′−D(u)w= s(u−u−)−[G(u)−G(u−)],

with boundary condition

w(u−=u0)=w(u+= ū)=0.
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Figure 3: Bifurcation diagram for options (2.18) with u0=0.

The value of τ corresponding to a given ū can be computed using a shooting method
proposed by [21]. To show the relationship between τ-ū, we take M=0.5, ǫ=10−3, and
plot the bifurcation diagram for u0=0 in Fig. 3.

When u0 < uI and uB > u0, the traveling solutions can be classified using the five
regions in the bifurcation diagram. The results summarized from Ref. [21] are given in
Table 1.

Table 1: TW results of the 1D MBLE (2.9) and (2.18) summarized from Ref. [21].

Region Solution description

(uB,τ)∈A1 Rarefaction wave from uB down to uα trailing an admissible Lax
shock from uα down to u0

(uB,τ)∈A2 Rarefaction wave from uB down to ū trailing an undercompressive
shock from ū down to u0

(uB,τ)∈B An admissible Lax shock from uB up to ū (may exhibit oscillations
near u+ = uB) trailing an undercompressive shock from ū down to
u0

(uB,τ)∈C1 An admissible Lax shock from uB down to u0

(uB,τ)∈C2 An admissible Lax shock from uB down to u0 (may exhibit oscilla-
tions near u+=uB

3 An Adaptive moving mesh finite difference method

In this section, we describe the numerical procedure of the moving mesh FD method for
solving the non-equilibrium equations. This method is based on the quasi-Lagrangian
approach [40] in which we first transform the physical PDE from the physical coordinates
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(x,z,t) to the computational coordinates (ξ,η,t) and then discretize it using an FD scheme
in the space direction and an IMEX scheme in the time direction.

In the moving mesh situation, the uniform rectangular mesh is always redistributed
as a non-rectangular mesh, thus introduces a difficulty to the FD discretization. In order
to fix the problem we apply a coordinate transformation to (2.7). Let (x,z) and (ξ,η)
denote the physical and computational coordinates. Without loss of generality, (x,z) is
assumed to be in the interval Ωp = [xmin,xmax]×[zmin,zmax] and (ξ,η)∈Ωc = [0,1]×[0,1].
A general coordinate transformation is given by

x= x(ξ,η,t), z= z(ξ,η,t), t∈ [0,T],

with boundary condition

x(0,η,t)= xmin, x(1,η,t)= xmax, z(ξ,0,t)= zmin , z(ξ,1,t)= zmax . (3.1)

Using the transformation formulas:

ux =
1

J
[(uzη)ξ−(uzξ)η],

D(u)ux =
D(u)

J
[(uzη)ξ−(uzξ)η ],

(D(u)ux)x =
1

J

[(D(u)

J
(z2

ηuξ−zξzηuξ)
)

ξ
+
(D(u)

J
(z2

ξ uη−zξzηuξ)
)

η

]

,

where J = xξ zη−xηzξ is the Jacobian of the coordinate transformation, the physical PDE
can be transformed to its Lagrangian form

ut+
1

J

(
zη F(u)−xηG(u)
︸ ︷︷ ︸

F̃

)

ξ
+

1

J

(
xξ G(u)−yξ F(u)
︸ ︷︷ ︸

G̃

)

η

+
1

J

[(D(u)

J
(z2

ηuξ+x2
ηuξ−zξzηuη−xξ xηuη)

︸ ︷︷ ︸

R

)

ξ
+
(D(u)

J
(z2

ξuη+x2
ξuη−zξzηuξ−xξ xηuξ)η

︸ ︷︷ ︸

S

)]

− τ

J

[( H(u)

J
(z2

ηutξ+x2
ηutξ−zξ zηutη−xξ xηutη)

︸ ︷︷ ︸

P

)

ξ

−
( H(u)

J
(z2

ξutη+x2
ξutη−zξzηutξ−xξ xηutξ)

︸ ︷︷ ︸

Q

)

η

]

=0, (ξ,η)∈Ωc.

For convenience, the above equation is written in a simpler form:

ut+
1

J
F̃(u)ξ+

1

J
G̃(u)η+

1

J
[Rξ+Sη]−

τ

J
[Pξ+Qη]=0. (3.2)
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3.1 The spatial discretization

We will solve (3.2) in the computational domain with a method of lines approach. The
space discretization results in a large system of ODEs containing both stiff and nonstiff
parts which is suitable to be integrated using an IMEX method. By treating the nonstiff
advection terms F(u) and G(u) explicitly and the stiff terms Rξ , Sη, Pξ and Qη implicitly,
we can get a nonlinear system of equations. Since the stiff terms contain functions that
depend on u: D(u) and H(u), hence we linearize the nonlinear terms by approximating
them at tn instead of at tn+2. In this way we can fully exploit the advantages of the IEMX
method. Let the space steps ∆ξ = 1/NX, ∆η = 1/NZ, the computational domain Ωc can
be partitioned into NX×NZ equal sized cells [ξi,ξi+1]×[ηj ,ηj+1], i = 0,1,··· ,NX−1, j =
0,1,··· ,NZ−1. Let ∆t denote the time step size, the discretization of (3.2) can be written
as

un+1−un

∆t
+

1

Jn
i,j

[ ¯̃Fn
i+1/2,j− ¯̃Fn

i−1/2,j

∆ξ

]

+
1

Jn
i,j

[ ¯̃Gn
i,j+1/2− ¯̃Gn

i,j−1/2

∆η

]

+
1

Jn
i,j

[Rn+1
i+1/2,j−Rn+1

i−1/2,j

∆ξ

]

+
1

Jn
i,j

[Sn+1
i,j+1/2−Sn+1

i,j−1/2

∆η

]

− τ

Jn
i,j

[Pn+1
i+1/2,j−Pn

i−1/2,j

∆ξ

]

− τ

Jn
i,j

[Qn+1
i,j+1/2−Qn+1

i,j−1/2

∆η

]

=0, (3.3)

where the advection terms are discretized into conservation forms with ¯̃F and ¯̃G the nu-
merical fluxes in ξ-, η-direction, respectively:

¯̃Fi+1/2,j=
¯̃F(u−

i+1/2,j,u
+
i+1/2,j),

¯̃Gi,j+1/2=
¯̃G(u−

i,j+1/2,u+
i,j+1/2).

Ref. [41] pointed out that in general a solution containing nonclassical waves cannot
be approximated by standard schemes which rely almost entirely on the idea of sup-
pressing variation (e.g. monotone or total-variation-diminishing (TVD) / total-variation-
bounded (TVB) schemes). Therefore, we employ the central difference scheme

¯̃F(u−
i+1/2,j,u

+
i+1/2,j)=

¯̃F(ui,j,ui+1,j)=
1

2
[F̃(ui,j)+ F̃(ui+1,j)], (3.4)

and the local Lax-Friedrichs scheme

¯̃F(u−
i+1/2,j,u

+
i+1/2,j)=

1

2
[F̃(u−

i+1/2,j)+ F̃(u+
i+1/2,j)−max|F̃u|·(u+

i+1/2,j−u−
i+1/2,j)],

where the third term stabilizes the scheme by adding dissipation and the maximum is
taken between u−

i,j and u+
i,j. Two approaches are used to give the values of u−

i,j and u+
i,j, one

is the standard local Lax-Friedrichs flux (LLF):

u−
i+ 1

2 ,j
=ui,j, u+

i+ 1
2 ,j
=ui+1,j, (3.5)
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the other adopts the local Lax-Friedrichs flux with reconstruction using a linear approxi-
mation in each cell (LLFR) [42]:

u−
i+ 1

2 ,j
=ui,j+

∆ξ

2
si,j, u+

i+ 1
2 ,j
=ui+1,j−

∆ξ

2
si+1,j,

si,j =
(
sign(s−i,j)+sign(s+i,j)

) ‖s−i,js
+
i,j‖

‖s−i,j‖+‖s+i,j‖
,

s−i,j =
ui,j−ui−1,j

∆ξ
, s+i,j =

ui+1,j−ui,j

∆ξ
.

(3.6)

The discretization for ¯̃G is similar to that of ¯̃F. Then we apply the central difference
scheme to the diffusion terms, the mixed derivative terms and the coordinate derivatives,
for example:

Rn+1
i+1/2,j=

D(un
i+1/2,j)

Jn
i+1/2,j

[

(
(zη |ni+1/2,j)

2+(xη|ni+1/2,j)
2
)un+1

i+1,j−un+1
i,j

∆ξ

−
(
zξ |ni+1,jzη |ni+1,j+zξ |ni+1,jzη |ni+1,j

)un+1
i+1,j+1−un+1

i+1,j−1

2∆η

]

,

Pn+1/2
i+1/2,j=

D(un
i+1/2,j)

Jn
i+1/2,j

[

(
(zη |ni+1/2,j)

2+(xη|ni+1/2,j)
2
) (u

n+1
i+1,j−un

i+1,j)−(un+1
i,j −un

i,j)

∆t∆ξ

−
(
zξ |ni+1,jzη |ni+1,j+zξ |ni+1,jzη |ni+1,j

) (u
n+1
i+1,j+1−un

i+1,j+1)−(un+1
i+1,j−1−un

i+1,j−1)

2∆t∆η

]

,

and

xξ |i,j =
xi+1,j−xi−1,j

2∆ξ
, xη |i,j =

xi,j+1−xi,j−1

2∆η
,

xξ |i,j+ 1
2
=

1

2
[(xξ)i,j+(xξ)i,j+1], xη |i+ 1

2 ,j=
1

2
[(xη)i,j+(xη)i+1,j].

By making a discretization of the entire equation (3.3) in the way as we described above,
and bringing the terms that should be approximated at time tn+1 to the left-hand side of
the equation and the other terms to the right hand side, we arrive at the following system
of equations,

A(ūn)ūn+1=b(ūn).

In order to solve this large system of equations, we adopt an iterative method - the Bi-
Conjugate Gradient Stabilized (Bi-CGSTAB) method [43] which is provided by the pack-
age LASPACK [44]. The implementation of the moving mesh FD method is also realized
using LASPACK.
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3.2 An MMPDE-based moving mesh strategy

In the situation of moving mesh methods, in order to achieve high accuracy, the mesh
points may be redistributed in many ways according to the choices of the monitor func-
tion. A mesh equation is often solved simultaneously with the transformed PDE so as
to generate the mesh positions in tandem with the solution, as the Moving Finite Ele-
ment method of [45], the Moving mesh PDE (MMPDE) approach [33] and the parabolic
Monge-Ampere approach of [46], etc. In [47], based on the numerical tests, the authors
concluded that the MMPDE6 works best for Burgers’ equation, thus we consider the MM-
PDE6 for the RNERE and the MBLE which are extended forms of Burgers-type, and use
an adaptive monitor with directional control [34].

The MMPDE6 in 2D reads

MMPDE6:







∇̄·∇̄ẋ=− 1

τx
∇̄·(M∇̄x),

∇̄·∇̄ż=− 1

τz
∇̄·(M∇̄z),

M=

[
M1 0
0 M2

]

, (3.7)

subject to the boundary condition (3.1), where ∇̄= [∂/∂ξ,∂/∂η]T is the computational
gradient, M is a diagonal matrix monitor function which controls the mesh concentration,
τx and τz are artificial time parameters determining the time-scale over which a mesh
converges to steady state. Ref. [33] shows that when solved exactly, the mapping given
by (3.7) is well defined for all time. As a boundary condition, it is required that the
grid points in the corners do not move. Moreover, the boundary grid points can only
move along that boundary. In practice, we solve the one-dimensional version of (3.7):
ẋξξ =− 1

τx
(M1xξ)ξ for the horizontal boundaries and żηη =− 1

τz
(M2zη)η for the vertical

boundaries.

3.3 An adaptive monitor function with directional control

In the moving mesh method, the monitor function M is chosen to cluster mesh points at
critical regions where more accuracy is needed, thereby reducing errors introduced by
the numerical scheme. In this work, we consider an adaptive monitor function [34, 48]

Mi =(1−κ)γi(t)+κωi, i=1,2, (3.8)

with a time-dependent normalization for each spatial direction:

γi(t)=
∫ 1

0

∫ 1

0
ωidξdη.

The monitor matrix M prescribes the monitor values for all directions. If the diagonal
elements are identical, for example:

ωi=(|∆̄u|2) 1
4 , ∆̄=

∂2

∂ξ2
+

∂2

∂η2
,
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Figure 4: Initial meshes obtained by adaptive curvature type monitor with directional control (left) and without
directional control (right) with parameters NX=NZ=81, σ=2, τx =τz=0.1, κ=0.9.

the mesh adaptation will be nondirectional (isotropic). Ref. [34] shows that a directional
monitor function could produce much higher quality mesh at negligible costs, thus in
this work we impose the directional control (anisotropic). The monitor components ωi

can be chosen as arc-length type in each direction

ωi=(|∇̄iu|2)
1
2 , ∇̄1=

∂

∂ξ
, ∇̄2=

∂

∂η
,

or curvature type

ωi=(|∆̄iu|2)
1
4 , ∆̄1=

∂2

∂ξ2
, ∆̄2 =

∂2

∂η2
.

In (3.8), the critical regions are identified by the derivatives computed with respect to
the computational coordinates, which are smoother than the physical derivatives. The
function γi(t) averages the derivatives, resulting in an adaptive monitor function. The
ratio of points in the critical regions is denoted by κ [49]. Thus the monitor matrix M is
a symmetric positive definite matrix with different elements M1 and M2, therefore the
mesh adaptivity becomes directional. In Fig. 4 we plot the adaptive meshes obtained
using the adaptive curvature type monitor function with and without directional control
for the initial condition (4.7) in Example 3-2. It shows that the monitor function with
directional control can identify the critical regions more clearly than the one without
directional control.

Since the computed monitor components Mi, i=1,2 are usually non-smooth, in order
to avoid a very distorted mesh around critical regions, in practice the components are
generally smoothed [35, 50, 51] before the use for the integration of the MMPDE6. In
our computation we apply a smoothing strategy based on a diffusive mechanism in [35].
Similar smoothing strategies have been adopted in [31,32,52] and obtained good results.
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The smoothing equation in [35] is given by

[

I−σs(σs+1)

(

(∆ξ)2 ∂2

∂ξ2
+(∆η)2 ∂2

∂η2

)]

M̃i=Mi, i=1,2, (3.9)

where I is the identity operator, σs is the spatial smoothing parameter. By solving (3.9)
we can obtain a smoother monitor function M̃ which introduces less singularity to (3.7),
hence MMPDE6 can be solved more efficiently.

For solving the MMPDE we use the central difference discretization in the space di-
rection and the Euler Backward integrator in the time direction. The monitor function M

is calculated on beforehand, so that the system of equations resulting from the discretiza-
tion is linear. This system is again solved using the Bi-CGSTAB method.

4 Numerical experiments

In this section we present numerical results obtained with the moving mesh FD method
described in the previous section for a selection of examples. In all examples the time
step used satisfies

∆t=C mini,j

(
xi+1,j−xi−1,j

2G′(ui,j)
,
zi,j+1−zi,j

2F′(ui,j)

)

,

where C is called a CFL constant. To reduce the time integration error of the IMEX
method, we use a CFL number of 0.2.

In the following subsections, the moving mesh FD method will be investigated with
respect to both accuracy and efficiency.

4.1 Numerical convergence

In this section, numerical experiments will be carried out to demonstrate the effectiveness
of the moving mesh FD method.

Example 1. In the first example, we will solve the 1D MBLE in z-direction with the central
difference flux (3.4), the LLF flux (3.5) and the LLFR flux (3.6), then we decide which flux
scheme is suitable for the computation of the MBLE. The accuracy and effectiveness of
the moving mesh method are illustrated by comparing the numerical solutions obtained
using the moving mesh with the solutions of the uniform mesh. This example is a 1D
version of Example 5 with MBLE (2.11) and initial condition (4.5) in [25].

In (2.9) when G(u), D(u), H(u) are given by

G(u)=
u2

u2+M(1−u)2
(1−C(1−u)2), D(u)=−ǫ, H(u)=ǫ2,

M=0.5, C=2, ǫ=10−3, τ=2.5,
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with initial and boundary condition

u(z,0)=







0, z∈ [0,0.75],
0.85, z∈ (0.75,2.25),
0, z∈ [2.25,3],

(4.1)

u(0,t)=0, u(3,t)=0, t∈ [0,0.48]. (4.2)

By applying the shooting method proposed in [21] and using the traveling wave re-
sults, we can find that for the initial condition (4.1), a monotone basin of value u≈0.3532
exists in the drainage front together with a non-monotone plateau of value u ≈ 0.9449
in the imbibition front. In Fig. 5, we plot the numerical solutions obtained by both uni-
form and moving mesh methods with different fluxes and monitors. In the top left figure
one can see that when a uniform mesh with 20012 points is used, the central flux gives a
higher plateau and a lower basin, the LLF flux results in no plateau and no basin while
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Figure 5: Solutions computed using the uniform mesh (NZ=2001, top left) and the moving mesh (NZ=251,
σ=2, τz=0.1, κ=0.9, top right); solutions (bottom left) and monitors (bottom right) obtained by the moving
mesh using the arc-length type monitor and the curvature type monitor.
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the LLFR flux obtains the closest plateau and basin values. These different results are
deemed to be caused by the oscillation of the central flux, the diffusion of the LLF flux
and the less diffusion of the LLFR flux. The top right figure shows that the when the
moving mesh method with the arc-length type monitor function is used, the solutions
obtained by all three fluxes get improved to some extent: the central flux gives the most
accurate plateau and basin values, the LLFR flux gives better plateau value but there is
oscillation near the basin area, the solution of the LLF flux gets a little improved but the
plateau and basin values are still not acceptable because of the large diffusion of the flux.
Although the central flux and the LLFR flux can give very accurate plateau and basin
values, near the basin regions oscillations still appear because of a lack of grid points.
Therefore, in the bottom left figure we show the results computed using the curvature
type monitor function. It can be seen that when the transition areas near the basin regions
are identified by the curvature type monitor (see the bottom right figure), the oscillations
are removed, thus the basin profiles of central flux and LLFR flux get improved. From the
above observations, it can be concluded that when the moving mesh method is used, the
curvature type monitor with central flux can give the most accurate plateau and basin
values, while in uniform mesh situation the LLFR flux gives closest plateau and basin
values among the three fluxes.

Fig. 6 shows the convergence of both the uniform method with an increasing num-
ber of spatial grid points and the moving mesh method with an increasing of adaptivity
parameter κ. As we can see from the figures, the finer is the uniform mesh, the more accu-
rate solution we get, this obviously shows the numerical convergence of the FD method
on uniform meshes. In the moving mesh case, when the adaptivity parameter κ becomes
larger, more mesh points are clustered at critical regions, which gives plateau and basin
heights with more accuracy. It is worth saying that for this example the moving mesh
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Figure 6: Example 1: solutions computed at t=0.48 using the uniform mesh (left figure: NZ=1001,2001,4001,
central flux) and the moving mesh (right figure: NZ= 251, σ = 2, τz = 0.1, κ = 0.3,0.5,0.7,0.9, central flux,
curvature type monitor).
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Table 2: Comparison of the CPU time [s] between the uniform mesh and the moving mesh case.

Uniform mesh Moving mesh

Mesh size CPU time [s] Adaptivity CPU time [s]

1001 9.02 κ=0.3 9.72

2001 36.93 κ=0.5 16.98

4001 164.25 κ=0.7 25.91

- - κ=0.9 39.48

method needs approximately a factor of about 10 fewer grid points than the uniform
mesh method to get the same plateau and basin values. The moving mesh method with
251 points and adaptivity κ=0.9 performs even better than the uniform mesh with 4001
points. Table 2 gives a comparison of CPU time between the uniform mesh cases and
the moving mesh cases. As we can see, the CPU time increases with increasing mesh
size and κ. The moving mesh of 251 points with κ=0.3 and κ=0.9 take almost the same
time as the uniform mesh with 1001 and 2001 points, respectively, but the moving mesh
solutions are more accurate than the uniform mesh solutions.

In Fig. 7 we plot the trajectories of the meshes obtained using different smoothing pa-
rameters. When there is non spatial smoothing, the grid trajectories oscillate in the space
direction, as the smoothing parameters increase, the grid trajectories become smoother.
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Figure 7: Grid (101 points) trajectories without spatial smoothing (left: σs=0, τs=0.1); a grid with smoothing
in both space and time variables (middle: σ=2, τs =0.1) and a grid with too much smoothing (right: σs =2,
τs =1).

Example 2. Consider the 1D RNERE (2.9) with functions (2.14) and initial and boundary
conditions







u(z,t=0)=
1

2
(u+−u−)

[

1+tanh
(100(z−0.9(zmax−zmin))

zmax−zmin

)]

+u−,

u(z=0,t)=u−, u(z=4,t)=u+,

z∈ [0,4].

Fig. 8 presents the initial condition together with the solutions profiles and phase
planes computed using the uniform mesh and moving mesh at time t= 12. We choose
NZ=101,401 for the uniform mesh and NZ=51,201 for the moving mesh. It shows that in
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Figure 8: Example 2: solutions (left) and phase planes (right) computed at t = 12 using the moving mesh
(NZ=51,201, σ=2, τz=0.1, κ=0.9) and uniform mesh (NZ=101,401).

the moving mesh situation, the mesh points are clustered near the critical regions, which
helps to improve the accuracy of the solutions. The plots of the phase planes in Fig. 8
(right) also show that when the meshes are refined, both the uniform and moving mesh
profiles converge to the TW result. It is worth saying that with the moving mesh method,
the solutions computed using NZ = 201 points is comparable with the uniform mesh
solution using 401 points. When NZ= 200, the moving mesh solution almost coincides
with the TW solution.

4.2 Numerical experiments in 2D

Example 3-1. The first 2D problem is concerned with the MBLE (2.7) without dynamic
capillary pressure and the functions are given by







F(u)=
u2

u2+(1−u)2
,

G(u)= f (u)(1−5(1−u)2),

D(u)=−0.01, H(u)=0.012,

(4.3)

the initial data is

u(x,z,0)=

{

1, x2+z2
<0.5,

0, otherwise,

considered in the square domain [−1.5,1.5]×[−1.5,1.5].
This example is taken from [53] and has no exact solution. Zhang and Tang [42]

solved this equation with an adaptive moving mesh finite volume method. Their results
shows that the adaptive mesh solutions are more accurate than the uniform mesh ones.
Since Example 1 demonstrates that the LLF flux is too diffusive, in Fig. 9 we only present
the moving mesh solutions obtained by the central flux and the LLFR flux on different
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Figure 9: Example 3-1 with τ=0: adaptive mesh solutions (top, σ=2, τx=τz=0.1, κ=0.9) and corresponding

meshes (bottom) at t=0.5. From left to right: central flux 512 points, LLFR flux 512 points, central flux 812

points, LLFR flux 812 points.

meshes using the curvature type monitor. It is observed that on a mesh with 512 points,
the central flux will cause oscillations near the upper front, while the LLFR flux gives
smoother profiles. However, if we increase the mesh size to 812, there is no oscillation
in the central flux solution and the solution is very close to the LLFR solution. By com-
paring Fig. 9 with the results presented in Ref. [42] in the eyeball norm, we may draw
the conclusion that the moving mesh FD method performs as good as the moving mesh
finite volume method.

Example 3-2. Next, we study two different initial conditions of the 2D MBLE with the
dynamic capillary pressure term. The functions F(u), G(u), D(u), H(u) are the same
as those used in Example 3-1. When dynamic coefficient τ is not zero, we can use the
TW analysis in Section 2.3 to predict the behavior of the solution. Choosing τ= 0.5 and
consider the 1D MBLE in the z direction, if the initial condition is taken as

u(z,0)=

{

0.9, |z|<
√

0.5,

0, otherwise,
z∈ [−1.5,1.5], (4.4)

the TW analysis shows that in the z direction, a saturation plateau of height u≈0.97 will
appear at the shock front (see Fig. 10 left). For the 1D MBLE in the x direction, taking the
initial condition as

u(x,0)=

{

0.9, |x|<
√

0.5,

0, otherwise,
x∈ [−1.5,1.5], (4.5)

the TW analysis shows that τ is too small to produce saturation overshoot, only mono-
tone solution exists in the x-direction (see Fig. 10 right).
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Figure 10: 1D MBLE with initial condition (4.4) (left) and (4.5) (right) at t=0.5.

Now, we study two different initial conditions: one with a cylindrical shape

u(x,z,0)=

{

0.9, x2+z2
<0.5,

0, otherwise,
(x,z)∈ [−1.5,1.5]×[−1.5,1.5], (4.6)

and one with a cubic shape

u(x,z,0)=

{

0.9, x2
<0.5,z2

<0.5,

0, otherwise,
(x,z)∈ [−1.5,1.5]×[−1.5,1.5]. (4.7)

The solutions of the MBLE with initial condition (4.6) computed using the uniform mesh
and the moving mesh are illustrated in Fig. 11. As one can see from Fig. 11, the MBLE
generates a clear plateau at the shock front in the z-direction as expected. The plateau
heights obtained by central flux are generally higher than those obtained by LLFR flux.
The plateau height obtained by the moving mesh (3012 points) with central flux is very
close to the TW results, and is even more accurate than the plateau heights getting by the
uniform mesh with 10012 points. This indicates about 10 times saving in the spatial grids,
which is especially useful when dealing with 3D computations.

Since the LLFR flux performs better than the central flux in the uniform mesh situa-
tion, and the central flux performs better than the LLFR flux in the moving mesh situa-
tion, thus in Fig. 12 we show the results with initial condition (4.7) for the above choices.
Similarly to the previous case of the initial condition (4.6), the non-monotone plateaus
are located near the shock front in the z-direction and become thinner and lower along
the positive x-direction because of the rarefaction waves created by the flux F(u). Again,
the moving mesh method gets a more accurate plateau height than the uniform mesh
method.

Example 4. In the last example we simulate the finger phenomenon using the RNERE
with the Brooks-Corey model. Ref. [54] presented snapshots of the finger phenomenon
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(a) Plateau height ≈1.0253 (b) Plateau height ≈0.9698 (c) Plateau height ≈0.9859

(d) Plateau height ≈0.9327 (e) Plateau height ≈0.9571 (f) Plateau height ≈0.9768

Figure 11: Example 3-2 with initial condition (4.6) at t = 0.5: solutions obtained by the uniform mesh and
adaptive mesh. Dashed line: u= 0.97. Top row: central flux; bottom row: LLFR flux. Left column: uniform
mesh 3012 points; middle column: moving mesh 3012 points (σ=2, τx=τz=1, κ=0.6); right column: uniform
mesh 10012 points.

for water infiltrating into 20/30 sand. In this example, we use the RNERE (2.6) and the
Brooks-Corey model to generate a single finger numerically. The physical parameters of
the 20/30 sand [4,55] as well as the constants and the Brooks-Corey model [56] are listed
in Table 3 and Table 4.

Table 3: Physical parameters for 20/30 sand.

Drainage Imbibition

Sand κ [m s−1] φ [-] ure [-] λ [-] pd [Pa] ure [-] λ [-] pd [Pa]

20/30 2.5×10−3 0.35 0 5.57 850 0 5 490

Consider the physical domain [0,0.3]×[0,0.35][m], let u−= 0.03 and u+= 0.4210, we
take the initial condition as

u(x,z,0)=u−+
1

8
(u+−u−)

[(

1.0−tanh(
200

xmax−xmin
(x−0.18))

)

×
(

1.0+tanh(
200

xmax−xmin
(x−0.12))

)

×
(

1.0+tanh(
200

zmax−zmin
(z−0.95(zmax−zmin)))

)]

.
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(a) Plateau height ≈0.9670 (b) Plateau height ≈0.9695

Figure 12: Example 3-2 with initial condition (4.7) at t=0.5: solutions obtained by the uniform mesh and the

adaptive mesh. Left column: top and 3D views on uniform mesh (10012 points) with LLFR flux; right column:
top and 3D views on moving mesh (3012 points, σ=2, τx =τz=1, κ=0.6) with central flux.

Table 4: Constants and the Brooks-Corey model.

Density [kg m−3] ρw=998.21 ρn =1.2754

Viscosity [kg m−1s−1] µw =1.002×10−3 µn =1.82×10−5

Mobility [m s kg−1] λw = Kkrw
µw

λn =
Kkrn
µn

Constants g=9.81 [m s−2] K= κµw

ρwg [m2]

Capillary pressure Relative permeability

ue=
u−ure
1−ure

krw=u
2+3λ

λ
e

Brooks-Corey model
pc= pdu

− 1
λ

e , for pc> pd krn=(1−ue)2(1−u
2+λ

λ
e )

The initial saturation is presented is Fig. 13 (a). In this simulation, we use a Dirichlet
boundary condition on the upper boundary z=0.35, a Neumann boundary condition on
the lower boundary z=0, and a periodic boundary condition on the vertical boundaries.
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Figure 13: Example 4 at t= 350, top left: 1D moving mesh solution with 201 points; top right: 2D initial
saturation; bottom left: 2D moving mesh solution with 2012 points; bottom right: 2D moving mesh with 2012

points (right).

Fig. 13 (c,d) illustrate the results for the numerical simulation at t = 350. Along the
tail region, in contrast to the 1D simulation in Fig. 13 (b), the saturation profile for the 2D
simulation decreases in the z-direction from the upper flow boundary and the overshoot
saturation is lower than the value in 1D. This indicates that the lateral flow caused by
the pressure gradient greatly influences the saturation profile. In real experiments, as is
explained by [3], hysteresis is responsible for controlling the finger’s sideways growth.
In order to simulate realistic fingers, capillary pressure hysteresis has to be incorporated.
Since our interest in this work is the dynamic capillary pressure effect, we would like
to refer the interested readers to the discussions and simulations considering hysteresis
in [10, 11, 57].

5 Conclusions

In the present work, we considered two types of non-equilibrium equations correspond-
ing to the dynamic capillary pressure in porous media. We described the traveling waves
for the relaxation non-equilibrium Richards equation and modified Buckley-Leverett equa-
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tion, and the stability theory of the RNERE was verified by solving the governing equa-
tion numerically. Then we introduced a moving mesh finite difference method which
is based on the quasi-Lagrangian formulation to approximate the RNERE and MBLE.
The numerical scheme was tested on a suite of numerical experiments and showed to
be robust. It enabled us to characterize the dynamic capillary effect in some 1D and 2D
examples. In particular, we found that the moving mesh method performed much better
than the uniform grid method and the central flux with adaptive curvature type monitor
is more suitable for the simulating of flows in porous media.

Future work would extend the method of this paper to simulate the finger phe-
nomenon incorporating both dynamic capillary pressure and capillary pressure hystere-
sis. This will improve the profile of the 2D finger by damping the lateral flow.
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