Geometric Aspects of Certain Classes of Nonnegative Matrices

Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam

(joint work with A. Cihangir, NWO Project 613.001.019)

12 November 2015

Background

- 1985 preview day at UU
- 1986-1990 Mathematics studies UU
- approx. theory, num. lin. alg. (lecturer: Prof. G.L.G. Sleijpen)
- multigrid, finite elements (lecturer: Mr. Sleijpen)
- December 21, 1990: Thesis (supervisor: Gerard Sleijpen)
- 1991-1995 Mathematics PhD UU
- January 16, 1995: PhD defense (thesis co-supervisor: Gerard)

Background

- 1985 preview day at UU (a guy with beard (from the south))
- 1986-1990 Mathematics studies UU
- approx. theory, num. lin. alg. (lecturer: Prof. G.L.G. Sleijpen)
- multigrid, finite elements (lecturer: Mr. Sleijpen)
- December 21, 1990: Thesis (supervisor: Gerard Sleijpen)
- 1991-1995 Mathematics PhD UU
- January 16, 1995: PhD defense (thesis co-supervisor: Gerard)

Background

(lino cuts by Henk van der Vorst)

01. Simplices, Facets, and Dihedral Angles

n-simplex S:

convex hull of n+1 affinely independent points in \mathbb{R}^n

facet F_v opposite a vertex v of S:

convex hull of the n vertices of S other than v

dihedral angle γ between two facets F and G of S:

 π minus the angle between outward normals to F and G

An *n*-simplex has $\binom{n}{2}$ dihedral angles

02. Acute, right, and obtuse dihedral angles

Each facet makes at least one acute angle with another facet

If v projects in the interior of F_v then F_v makes acute angles only

03. Nonobtuse simplices have nonobtuse facets

S is a nonobtuse simplex if each vertex v projects onto F_v

If S is nonobtuse, then F_v is also nonobtuse for all vertices v

04. Nonobtuse facets do not yield nonobtuse simplices

if all facets F_v of S are nonobtuse, S may fail to be nonobtuse

S has nonobtuse facets iff each v projects onto the dual hull F_v^*

05. Problem formulation

Property N of S is transferred to all descendants of S

Groal: to find a property **S** such that:

- if all descendants of S have property **S**, then so has S
- $\bullet~S$ implies N

Consequence:

If all k-facets of an n-simplex S have property S, then S has property N

06. Equilateral triangles, Schläfli tets, ultrametric tets

Each of these is an example of a sub-orthocentric tetrahedron

07. Sub-orthocentric tetrahedra

Suppose that each vertex v of a tet \bowtie projects between the orthocenter and a vertex of F_v

Such a tetrahedron is called sub-orthocentric

A simplex with sub-orthocentric tetrahedral facets is nonobtuse

08. Sub-orthocentric set of a simplex

It is not clear how to generalize the sub-orthocentric set to higher dimensions, as n-simplices for $n \ge 3$ do not have orthocenters.

Each altitude of S induces a subdivision of S into n sub-simplices

For each facet F, remove from S the interior of the intersection of all these subsimplices that have F as a facet

09. Example: sub-orthocentric set of a tetrahedron

Each altitude of \square induces a subdivision of \square into 3 sub-tetrahedra.

For each triangular facet Δ , remove from \square the iterior of the intersection of all three sub-tetrahedra that have Δ as a facet

10. Example: sub-orthocentric set of a tetrahedron

Left: the sub-orthocentric set of a orthocentric tetrahedron

Middle and right:

The sub-orthocentric set of a sub-orthocentric tetrahedron

11. The sub-orthocentric 4-simplex

A 4-simplex \boxtimes is sub-orthocentric if each vertex of \boxtimes projects on the sub-orthocentric set of its opposite facets.

Theorem: If all facets of \boxtimes are sub-orthocentric, then so is \boxtimes

Note: A sub-orthocentric simplex is nonobtuse (by definition).

Conjecture:

If all facets of an n-simplex S are sub-orthocentric, then so is S

12. The linear algebraic context

Let $A \in \mathbb{R}_{spd}^{n \times n}$ be symmetric positive definite

Then both A and A^{-1} are Gramians

$$A = P^{\mathsf{T}}P$$
 and $A^{-1} = Q^{\mathsf{T}}Q$ with $Q^{\mathsf{T}}P = I$

and with $P \in GL_n(\mathbb{R})$.

If the origin and columns of P are the vertices of an n-simplex S, then the columns of Q and minus their sum, are inward normals to the facets of S

13. Vertex Gramians of a simplex

Let S be an n-simplex with vertices $v_0, \ldots, v_n \in \mathbb{R}^n$.

Definition: A vertex Gramian G_{ℓ} of S associated with v_{ℓ} is the Gramian $G_{\ell} = P_{\ell}^{\top} P_{\ell}$ of P_{ℓ} , where P_{ℓ} has columns $\{v_k - v_{\ell} | k \neq \ell\}$

A simple, but not widely known characterization is:

The set of all vertex Gramians of nonobtuse simplices = The set of all diagonally dominant inverse M-matrices $(A^{-1} = D - C \text{ with } C, D \ge 0 \text{ and } D \text{ diagonal})$

Submatrices inherit this property but the converse doet not hold

Another simple, but not widely known characterization is:

Simplices with nonobtuse triangular facets

Pointwise diagonally dominant doubly nonnegative matrices

=

$$(A \in \mathbb{R}^{n \times n}_{spd}, A \ge 0, a_{jj} \ge a_{ij})$$

How to recognize the inverse of a nonnegative matrix?

Another simple, but not widely known characterization is:

Vertex Gramians of simplices with nonobtuse (n-1)-facets \subset Completely positive matrices $(A = P^T P \text{ with } P \ge 0)$

Can the columns of a given matrix be mapped simultaneously and isometrically in the nonnegative orthant?

Simplices with sub-orthocentric tetrahedral facets

=

Ultrametric matrices

all 3×3 principal submatrices are, modulo simultaneous rows and column permutations

$$\begin{bmatrix} d & b & a \\ b & c & a \\ a & a & f \end{bmatrix}, \text{ with } a \leq b < c \leq d \text{ and } a < f.$$
(1)

These ultrametric matrices were our research motivation

References

J.H.Brandts and A. Cihangir (2015) *Geometric Aspects of the Symmetric Inverse M-Matrix Problem* Submitted, and to appear also on ArXive.math: (42 pages)

J.H.Brandts and A. Cihangir (2015) *Enumeration and Investigation of Acute 0/1-simplices modulo the Action of the Hyperoctahedral Group* Submitted, and to appear also on ArXive.math: (50 pages)