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1960-1980: views on numerical methods

(in Utrecht, professor A. van der Sluis, drs. Hans Zweerus)

Wilkinson (1965)

Linear systems: LU

CG / Lanczos: finite methods

All basic methods already invented
New insights required for continous
problems (pde’s, quadrature, ode’s)
more mathematical skills necessary:
Functional Analysis




The solution: Gerard Sleijpen

Gerard’s expertise before Utrecht:
Thesis: Convolution measure algebras on semigroups

Scary titles like: The support of the Wiener algebra
on stips,

And: emaciated sets and measures with continuous
translations

And: The action of a semigroup on a space of
bounded Radon measures,

And 10 more
So, when did Gerard come to Utrecht?
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Reconstruction of Gerard’s CV

A simple NA-type of analysis:

1. Born in 1950 (since he is 65 now)

2. Clever person, hence after 17 years to
Nijmegen

3. I guess he did his master in about 5 years

4. Very clever, hence phd in about 4 years

5. Usual promising start: 5 years postdoc, etc

This amounts to: (1950+17+5+4+5)(1+4¢&)=1981



... and then things changed

In 1982: his last paper on pure mathematics
In 1983: first NA-paper, on parabolic pde'’s

Later in the 1980’s: 4 papers on Hopscotch methods
(with and without Jan ter Maten)

Worked together with phd-students of van der Sluis



Intermezzo

Professor van der Sluis retired in 1988.
Two years of very hard work

All NA in Utrecht was done by Gerard



1990

Workstations introduced in Utrecht (after 2 years of
no-prof NA)



1990

Workstations introduced in Utrecht (after 2 years of
no-prof NA)

Henk came from Delft to Utrecht




...and then things changed

In 1991 first preprint on num lin alg (cg)
1993: 5 papers (4 with H)

1994: 8 papers (4 with H)

1995: 4 papers (with H)

1996: 11 papers (10 with H)

1997: 2 papers (1 with H) fatigue?
1998: 5 papers (with H)

1999: 4 papers (3 with H)

2000: 5 papers (with H)
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1993: 5 papers (4 with H)

1994: 8 papers (4 with H)

1995: 4 papers (with H)

1996: 11 papers (10 with H)

1997: 2 papers (1 with H) fatigue?
1998: 5 papers (with H)

1999: 4 papers (3 with H)

2000: 5 papers (with H)

After 2000 some 25 papers, now with other co-authors, but still
mainly on iterative methods (JD, IDR, multilevel)

And many of my phd-students (piao’s of Gerard)
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h - h I - ht BiCGstab(/) and other hybrid Bi-CG methods
I g I g S G.L.G. Sleijpen, H.A. van der Vorst and D.R. Fokkema
Mathematical Institute, University of Utrecht, P.O. Box 80.010, NL-3508 TA Utrecht, The Netherlands

Received 29 October 1993; revised 2 March 1994
Communicated by C. Brezinski

It is well-known that Bi-CG can be adapted so that the operations with AT can be avoided,
and hybrid methods can be constructed in which it is attempted to further improve the conver-
gence behaviour. Examples of this are CGS, Bi-CGSTAB, and the more general BiCGstab(/)
method. In this paper it is shown that BiCGstab(/) can be implemented in different ways. Each
of the suggested approaches has its own advantages and disadvantages. Our implementations
allow for combinations of Bi-CG with arbitrary polynomial methods. The choice for a specific
implementation can also be made for reasons of numerical stability. This aspect receives much
attention. Various effects have been illustrated by numerical examples.

Keywords: Bi-Conjugate gradients, non-symmetric linear systems, CGS, Bi-CGSTAB,
iterative solvers, ORTHODIR, Krylov subspace.

AMS subject classification: 65F10.

1. Introduction and background

The Bi-CG algorithm [3,7] is an iterative solution method for linear systems
Ax=b (1)

in which 4 is some given non-singular » X n matrix and b some given n-vector.
Typically, n is large and 4 is sparse. For ease of presentation, we assume 4 and
b to be real.

Starting with some initial approximation x, for x and some ‘“‘shadow” residual 7
Bi-CG produces iteratively sequences of approximations x, residuals r, and search
directions u; by

Up =g — Brll—1, Xis1 = X+ opty,  Trg = 1 — oAy, (2)

where oy and §y, are appropriate scalars, u_; = 0, and ro = b — Ax,. The residual r;
and the search direction u;, are in the Krylov subspace %, 1(4;rg) of order k + 1
generated by A and ry,. This implies that the residuals r, can be written as
e = ér(A)ry where ¢, is a certain polynomial, the so-called Bi-CG polynomial,
in the space 2} of all polynomials ¢ of degree k for which ¢(0) = 1. We will use

© J.C. Baltzer AG, Science Publishers
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A Jacobi-Davidson Iteration
Method for Linear Eigenvalue
Problems*

¢ Gerard L. G. Sleijpen’
Henk A. Van der Vorstf

Abstract. In this paper we propose a new method for the iterative computation of a few of the
extremal eigenvalues of a symmetric matrix and their associated eigenvectors. The method
is based on an old and almost unknown method of Jacobi. Jacobi’s approach, combined
with Davidson’s method, leads to a new method that has improved convergence properties
and that may be used for general matrices. We also propose a variant of the new method
that may be useful for the computation of nonextremal eigenvalues as well.

Key words. eigenvalues and eigenvectors, Davidson’s method, Jacobi iterations, harmonic Ritz values
AMS subject classifications. 65F 15, 65N25

PIL. S0036144599363084

I. Introduction. Suppose we want to compute one or more eigenvalues and their
corresponding eigenvectors of the n X n matrix A. Several iterative methods are
available: Jacobi’s diagonalization method [9], [23], the power method [9], the method
of Lanczos [13], [23], Arnoldi’s method [1], [26], and Davidson’s method [4], [26], [3],
[15], [18]. The latter method has been reported to be quite successfiil, most notably in
connection with certain symmetric problems in computational chemistry [4], [5], [32].
The success of the method seems to depend quite heavily on the (strong) diagonal
dominance of A.

The method of Davidson is commonly seen as an extension to Lanczos’s method,
but as Saad [26] points out, from the implementation point of view it is more related
to Arnoldi’s method. In spite of these relations, the success of the method is not
well understood [26]. Some recent convergence results and improvements, as well as
numerical experiments, are reported in [3], [15], [16], [18], [17], [19], [28].

Jacobi [12] proposed a method for eigenvalue approximation that essentially was
a combination of (1) Jacobi rotations, (2) Gauss-Jacobi iterations, and (3) an almost
forgotten method that we will refer to as Jacobi’s orthogonal component correction
(JOCC). Reinvestigation of Jacobi’s ideas leads to another view of Davidson’s method,
and this not only helps us explain the behavior of the method, but it also leads to a new
and robust method with superior convergence properties for nondiagonally dominant
(unsymmetric) matrices as well. Special variants of this method are already known;
see [19], [28], and our discussion in section 4.1.

*Published electronically April 24, 2000. This paper originally appeared in SIAM Journal on
Matriz Analysis and Applications, Volume 17, Number 2, 1996, pages 401-425.
http://www.siam.org/journals/sirev/42-2/36308.html
tMath ical i Utrecht Uni ity, P.O. Box 80.010, 3508 TA Utrecht, Netherlands
(sleijpen@math.uu.nl, vorst@math.uu.nl).
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Reliable Updated Residuals in Hybrid Bi-CG Methods
G. L. G. Sleijpen and H. A. van der Vorst, Utrecht

Received February 1, 1995; revised May 29, 1995

Abstract — Zusammenfassung

Reliable Updated Residuals in Hybrid Bi-CG Methods. Many iterative methods for solving linear
equations Ax=5b aim for accurate approximations to x, and they do so by updating residuals
iteratively. In finite precision arithmetic, these computed residuals may be inaccurate, that is, they
may differ significantly from the (true) residuals that correspond to the computed approximations. In
this paper we will propose variants on Neumaier’s strategy, originally proposed for CGS, and explain
its success. In particular, we will propose a more restrictive strategy for accumulating groups of
updates for updating the residual and the approximation, and we will show that this may improve the
accuracy significantly, while maintaining speed of convergence. This approach avoids restarts and
allows for more reliable stopping criteria. We will discuss updating conditions and strategies that are
efficient, lead to accurate residuals, and are easy to implement. For CGS and Bi-CG these strategies
are particularly attractive, but they may also be used to improve Bi-CGSTAB, BiCGstab(/), as well
as other methods.

AMS Subject Classification: 65F10
Key words: Non-symmetric linear systems, iterative solver, CGS, Bi-CGSTAB, BiCGstab(/).

ZuverlaBlich berechnete Residuen in hybriden Bi-CG Verfahren. Viele iterative Methoden zur
Losung linearer Gleichungssysteme berechnen die Iterierten iiber aufdatierte Residuen. In endlicher
Arithmetik konnen diese Residuen sehr ungenau sein, d.h., sie konnen sich erheblich von den
tatsdchlichen unterscheiden. In dieser Arbeit stellen wir Varianten der Neumaier Strategie vor, die
urspriinglich fiir das CGS-Verfahren vorgeschlagen wurde, und erkliren deren Erfolge. Insbesondere
werden wir eine Variante vorschlagen, bei der mehrere Aufdatierungsschritte zusammengefaft
werden. Wir zeigen, daB sich die Genauigkeit der berechneten Residuen dadurch erheblich
verbessern 1dBt, ohne daB8 die Konvergenzgeschwindigkeit beeintrachtigt wird. Dieser Ansatz ver-
meidet Neustarts und ermdoglicht zuverldssigere Abbruchkriterien. Wir diskutieren
Aufdatierungsbedingungen und Strategien, die effizient und leicht zu implementieren sind. Diese
Strategien fithren zu genaueren Residuen und sind insbesondere fiir CGS und Bi-CG-aber auch fiir
Bi-CGSTAB, BiCGstab(/) und andere Verfahren—sehr attraktiv.

1. Introduction

We will focus on the iterative solution of linear systems
Ax=b (1)

in which A is a non-singular n X n matrix and b a given n-vector. Typically 7 is
large and A is sparse. To simplify our presentation, we will assume A and b to
be real. The class of iterative methods is characterized by the fact that the

highlights
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JACOBI-DAVIDSON STYLE QR AND QZ ALGORITHMS FOR THE
REDUCTION OF MATRIX PENCILS*

DIEDERIK R. FOKKEMA'f, GERARD L. G. SLEIJPENT, AND
HENK A. VAN DER VORSTf

Abstract. Recently the Jacobi-Davidson subspace iteration method has been introduced as a
new powerful technique for solving a variety of eigenproblems. In this paper we will further exploit
this method and enhance it with several techniques so that practical and accurate algorithms are
{ obtained. We will present two algorithms, JDQZ for the generalized eigenproblem and JDQR for the
standard eigenproblem, that are based on the iterative construction of a (generalized) partial Schur
form. The algorithms are suitable for the efficient computation of several (even multiple) eigenvalues
and the corresponding eigenvectors near a user-specified target value in the complex plane. An
attractive property of our algorithms is that explicit inversion of operators is avoided, which makes
them potentially attractive for very large sparse matrix problems.

We will show how effective restarts can be incorporated in the Jacobi-Davidson methods, very
similar to the implicit restart procedure for the Arnoldi process. Then we will discuss the use of
preconditioning, and, finally, we will illustrate the behavior of our algorithms by a number of well-
chosen numerical experiments.

Key words. linear eigenproblems, generalized eigenproblems, Schur form, generalized Schur
form, QR-algorithm, QZ-algorithm, Jacobi-Davidson, iterative methods

AMS subject classifications. 65F15, 65N25

PII. S1064827596300073

1. Introduction. In this paper we expand on the usage of the Jacobi-Davidson
method [26], [24] for the computation of several solutions of the generalized eigen-
problem!

(1) (BA-aB)q=0,

where A and B are large and sparse (n x n)-matrices, which may be complex and/or
nonnormal. We will also discuss the standard eigenproblem

2) (A-AI)g=0.

Of course, with B = I the generalized eigenproblem reduces to a standard eigen-
problem, and we could have restricted ourselves to the generalized eigenproblem case.
However, simplifications are possible when B = I that help reduce the memory re-
quirements and the computational complexity, and some phenomena are easier to
explain.

Our algorithms are based on the Jacobi-Davidson method described in [26] and
are adapted for generalized eigenproblems (and other polynomial eigenproblems)
in [24]. We have modified the Jacobi-Davidson approach so that partial (general-
ized) Schur forms are computed. The partial Schur forms have been chosen mainly

*Received by the editors March 4, 1996; accepted for publication (in revised form) March 5, 1997;
published electronically August 7, 1998.

http://www.siam.org/journals/sisc/20-1/30007.html

TDepartment of Mathematics, Utrecht University, P.O. Box 80.010, NL-3508 TA Utrecht, The
Netherlands (sleijpen@math.ruu.nl, vorst@math.ruu.nl).

$Current address: ISE Integrated Systems Engineering AG, Technopark Ziirich, Technopark-
strasse 1, CH-8005 Ziirich, Switzerland (fokkemaQ@ise.ch).
" 1The family A — AB is called a matriz pencil, and the generalized eigenvalues (e, B), solutions
of (1), are also called eigenvalues of the matrix pencil (cf., e.g., [30]).
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SIAM J. Sc1. COMPUT. (© 1998 Society for Industrial and Applied Mathematics
Vol. 19, No. 2, pp. 657-674, March 1998 y

ACCELERATED INEXACT NEWTON SCHEMES FOR LARGE
SYSTEMS OF NONLINEAR EQUATIONS*

DIEDERIK R. FOKKEMA', GERARD L. G. SLEIJPEN!, AND
HENK A. VAN DER VORST?

Abstract. Classical iteration methods for linear systems, such as Jacobi iteration, can be
accelerated considerably by Krylov subspace methods like GMRES. In this paper, we describe how
inexact Newton methods for nonlinear problems can be accelerated in a similar way and how this leads
to a general framework that includes many well-known techniques for solving linear and nonlinear
systems, as well as new ones. Inexact Newton methods are frequently used in practice to avoid the
expensive exact solution of the large linear system arising in the (possibly also inexact) linearization
step pf Newton’s process. Our framework includes acceleration techniques for the “linear steps” as
well as for the “nonlinear steps” in Newton’s process. The described class of methods, the accelerated
inexact Newton (AIN) methods, contains methods like GMRES and GMRESR for linear systems,
Arnoldi and Jacobi-Davidson for linear eigenproblems, and many variants of Newton’s method,
like damped Newton, for general nonlinear problems. As numerical experiments suggest, the AIN
approach may be useful for the construction of efficient schemes for solving nonlinear problems.

Key words. nonlinear problems, Newton’s method, inexact Newton, iterative methods
AMS subject classification. 65H10

PII. S1064827595296148

1. Introduction. Our goal in this paper is twofold. A number of iterative solvers
for linear systems of equations, such as the full orthogonalization method (FOM) [23],
the generalized minimal residual method (GMRES) [26], the generalized congruent
residual method (GCR) [31], the flexible GMRES method [25], the GMRES recursive
method (GMRESR) [29], and the GCR orthogonal method (GCRO) [7], are in struc-
ture very similar to iterative methods for linear eigenproblems, like shift and invert
Arnoldi [1, 24], Davidson [6, 24], and Jacobi-Davidson [28]. We will show that all these
algorithms can be viewed as instances of an accelerated inexact Newton (AIN) scheme
(cf. Algorithm 3) when applied to either linear equations or linear eigenproblems. This
observation may help us in the design and analysis of algorithms by “transporting”
algorithmic approaches from one application area to another. Moreover, our aim is to
identify efficient AIN schemes for nonlinear problems as well, and we will show how
we can learn from the algorithms for linear problems.

To be more specific, we will be interested in the numerical approximation of the
solution u of the nonlinear equation

(1.1) F(a)y=0,

where F' is some smooth (nonlinear) map from a domain in R™ (or C") that contains
the solution u, into R™ (or C™), where n is typically large.

Some special types of systems of equations will play an important motivating role
in this paper. .

*Received by the editors December 8, 1995; accepted for publication (in revised form) April 15,
1996.
http://www.siam.org/journals/sisc/19-2/29614.html
TISE Integrated Systems Engineering AG, Technopark Zurich, Technoparkstr. 1, CH-8005 Zurich,
Switzerland (fokkema@ise.ch).
fMathematical Institute, Utrecht University, P. O. Box 80.010, NL-3508 TA Utrecht, the Nether-
lands (sleijpen@math.ruu.nl, vorst@math.ruu.nl).
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DIFFERENCES IN THE EFFECTS OF ROUNDING ERRORS IN
KRYLOV SOLVERS FOR SYMMETRIC INDEFINITE LINEAR
SYSTEMS*

GERARD L. G. SLELJPENT, HENK A. VAN DER VORST!, AND JAN MODERSITZKI}

Abstract. The three-term Lanczos process for a symmetric matrix leads to bases for Krylov
subspaces of increasing dimension. The Lanczos basis, together with the recurrence coefficients,
can be used for the solution of symmetric indefinite linear systems, by solving a reduced system
in one way or another. This leads to well-known methods: MINRES (minimal residual), GMRES
(generalized minimal residual), and SYMMLQ (symmetric LQ). We will discuss in what way and to
what extent these approaches differ in their sensitivity to rounding errors.

In our analysis we will assume that the Lanczos basis is generated in exactly the same way for
the different methods, and we will not consider the errors in the Lanczos process itself. We will show
that the method of solution may lead, under certain circumstances, to large additional errors, which
are not corrected by continuing the iteration process.

Our findings are supported and illustrated by numerical examples.

Key words. linear systems, iterative methods, MINRES, GMRES, SYMMLQ, stability
AMS subject classifications. 65F10, 65N12

PII. S0895479897323087

1. Introduction. We consider iterative methods for the construction of approx-
imations to the solution of a linear system Ax = b, where A is supposed to be a
real symmetric n by n matrix. Without loss of generality, we assume xo = 0. Let
ry = b — Ax; (in particular, rp = b) and

Ki(A;b) = Span{b, Ab, ..., A* b},

the k-dimensional Krylov subspace. The methods to be analyzed build the iterates
xi such that z

1. x4 € K(A;b) and ||b — Axi[|» = min  (GMRES, MINRES),

2. x¢ € AKk(A;b) and |[A™'b — x[ls = min  (SYMMLQ).
With the standard three-term Lanczos process, we generate an orthonormal basis
Vi, ...,V for K4(A;b), with vi = b/||b|ls . The three-term Lanczos process can be
recast in matrix formulation as

(1) A‘Ik = \7]\7+lzks

in which Vj is defined as the n by j matrix with columns vi,...,v;, and T, isa k +1
by k tridiagonal matrix.

Paige [9] has shown that in finite precision arithmetic, the Lanczos process can
be implemented so that the computed Vi1 and T, satisty

2) AVi = Vi T, +Fy,

*Received by the editors June 17, 1997; accepted for publication (in revised form) by Z. Strakos
March 28, 2000; published electronically October 25, 2000.

http://www.siam.org/journals/simax/22-3/32308.html

fMathematical Institute, Utrecht University, P.O. Box 80.010, 3508 TA Utrecht, The Netherlands
(sleijpen@math.uu.nl, vorst@math.uu.nl).

nstitute of Mathematics, Medical University of Liibeck, WallstraBe 40, 23560 Liibeck, Germany
(modersitzki@math.mu-luebeck.de).

726

ghlights




... and then things changed

I always thought that Gerard was 45 or so, and kept that a
constant



... and then things changed

I always thought that Gerard was 45 or so, and kept that a
constant

But: he seems to be 65 now
My best wishes for a new phase for Gerard and Cunie



... and then things changed

I always thought that Gerard was 45 or so, and kept that a
constant

But: he seems to be 65 now
My best wishes for a new phase for Gerard and Cunie




