~ The Laplace Transform

As a convention, functions
Joy....arve defined for ¢ > 0
and their transforms I, G, . ..
arc defined on the s-axis.

THEOREM 1
EXISTENCE OF THE
LAPLACE
TRANSFORM

In this section we present the definition and basic propertics of the Laplace
transform. As a warm-up for the applications with partial diferential equa-
tions, we will use it to solve some simple ordinary differential cquations.

Suppose that f(t) is defined for all t > 0. The Laplace transform of
f is the function

e el

(1) L(f)(s) = st

Another commonly used notation for L(f)(s) is F(s). For the integral to
exist f cannot grow faster than an exponential. "This motivates the following
definition. We say that f is of exponential order if there exist positive
numbers @ and M such that

(2) If(£)] < Me® forallt > 0.

For example, the functions 1, 4cos2t, 5tsin2t, 3 are all of exponential
order. We can now give a sufficient condition for the existence of the Laplace
transform.

Suppose that f is piecewise continous on the interval [0, oo) and of expo-
nential order with | f(0)] < Me for all 1 > 0. Then L£(f)(s) exists for all

S 2.

Proof We have to show that for s > a
(>
L(f)(s) = f)e *dt < .
0

With AL and a as above, we have

/ ’ f(,)‘ ! (If| & / |f(t)ll st (lt < J’\[/ (Il'lf( st d,
" 0 | 0 0

. M
MA e rld e —— <0, -

5= q

Note that the function - is not of exponential order. because of its behavior
; I

at t = 0. However, wc will show in Example 2 below that its Laplace

transfor £ ( ‘/;) (s) exists for all s > 0. Thus Theorem 1 provides sufficient
V

but not necessary conditions for the existence of the Laplace transform.



THEOREM 2
LINEARITY

(¢) Using (a), and (15), Section 4.7,
A 12\ D2y fa
[«(W)—-ﬁ(t )— 51/2 = '; [ ]

Operational Properties

We will derive in the rest of this scction properties of the Laplace transform
that will assist us in solving differential equations. We are particularly
interested in those formulas involving a function, its transform, and the
transform of its derivatives. These formulas are similar to the operational
properties of the Fourier transform. Because the Laplace transform is defined
by an integral over the interval [0, 00), some of the formulas will involve the
values of the function and its derivatives at 0.

|[ffa‘nd g arc functions and o and 8 are numbers, then

Llaf + Bg) = aL(f) + BL(g) .

The proof is left as an excrcise. You should also think about the domain of
definition of L(af + Jg) in terms of the domains of definition of L(f) and

L(g).

EXAMPLE 3  L(coskt) and L(sin kt)

These transforms can be evaluated directly by using (1). Our derivation will be
based on Euler’s identity ¢'** = coskt + isinkt and the linearity of the Laplace
transform. We have

N
E(COS kt) + i[:(sin ch) = / (COS kt +isin l\?t)(’ sty
0
T s AL ;
/ ) t(*"'"““dt ) e tla—1k) _ 1
0 s — ik 0 s — ik
s + ik s ok

iy~ it e A e

Equating real and imaginary parts, we get

s k
L(cos kt) = ﬁ and L(sinkt) = ERwTE
For an alternative derivation, see Example 10 below. ]

The next result is very useful. It states that the Laplace transform takes
derivatives into powers of s.




THEOREM 3
LAPLACE
TRANSFORMS OF
DERIVATIVES

roof Since f is of exponential order, then (2) holds for some positive constants
a and M. The transform £(f")(s) is to be computed for s > a. Before we start the
computation, note that for s > a

. —al 7 —al —{s—all - H—a)
) e b > v < s =
Jim [ f(t)] Jim LF(6)] 7" < M Jim 0,
S‘,\".tll

because s — « *- 0. We now compute. using (1) and integrating by parts,

L(f')(s) = /O.If'(f.)("'“'llf (s > a)
= 10Ol o [ s e

~— ———
L)

= —f(0)+sL(f).

which proves (i). Pact (ii) follows by repeated applications of (i). [ |
When n = 2, (4) gives

(5) L(f") = s°L(f) = sf(0)  f'(0).

The following is a counterpart of Theorem 3 showing that the Laplace trans-
form takes powers of ¢ into derivatives.

THEOREM 4
DERIVATIVES OF
TRANSFORMS
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