Laplace transform. Basic properties

We spent a lot of tiine learning how to solve linear nonhomogeneous ODE with constant coefficients.
However, in all the examples we have considered, the right hand side (function f(t)) was continuous.
This is not usually so in the real world applications. In particular, we can consider the differential
operator L as a black box, which receives as input the external signal f(t) and produces as output the
solution y(t), symbolically, y = L~! f. It is more often than not the external signal can be represented
as a piecewise continuous function, hence it would be of great value to have an efficient method to
solve such problems. In the next three lectures we will learn one such possible method, which is based
on the Laplace transform.

Definition 1. Let function f be defined on [0,00). Then its Laplace transform £ {f} is another
function F, which is defined as

o0
F(s) :.i”{f}:z/ ex il ts (1)
0
The Laplace transformn, according to this definition, is an operator: It is defined on functions, and
it maps functions to another functions. Generally s is a complex variable, but in nost of the examples
we consider, we will not bother about the domain of F' or about the question on the existence of the
Laplace transform, for all the functions we deal with their Laplace transforins are well defined.

Note that in (1) the Laplace transforin is defined as an improper integral. Strictly speaking, while
evaluating this integral, we need to consider the limit

C
lim/ e Stf(t) dt.
=0 0

It is a good idea to remember about this limit, but in the calculations that follow I will usually use
shortcut notations. Let me start with several examples.

Example 2. Let f(t) = 1. Find .2 {f}. By definition,
. 1 1
Z{1} = “Stdp = — e = .
W= [ e =
Example 3. Let f(t) = ¢" for some a € R. Using the integration,

oo o0
£ {e™} = / e Stett dt = / e~lomaltqp =
0 0

where I assuined that s > a.
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Example 4. Let f(t) = t. Here I will use integration by parts:

ZA{t} = /ﬂ,C e Sttdt = —-Ee_s‘|°° + l/oo e Stdt = l
0 ) 0 S Jo §2



Example 5. Find .Z {sint} and % {cost}. Probably you remeinber that to evaluate the integrals of
the form [ € sin bt dt or J e cos bt dt you need to use a clever trick with integration by parts twice
(do it). I, however, will choose a different approach. From Euler’s formula e = cost + isint, we can
find that

et _ it elt + g-it

int=——— t=———

sin o cos 5
Now,

1 [ . ; 1 1 1 1
2 int} = — it it —stdt=_ _ - )
{sint} 2i/0 (" —e™)e 2i\s—i s+i) £2+1
Analogously, s
Z t}=———.
feost} = 573

We can continue evaluating these integrals and extending the list of available Laplace transforins.
However, a much more powerful approach is to infer soine general properties of the Laplace transforn,
and use them, instead of calculating the integrals. First very useful property is the linearity of the
Laplace transform:

1% Linearity. £ is a linear operator. This means that for any two functions f and g for which the
Laplace transforin is defined, and two constants a,b € R we have

ZL{af +bg} =aZL{f} +0.ZL{g}.
This follows from the linearity of the integrals.

Example 6. Using this property we can easily find, using the information above, the Laplace trans-
formn of, e.g., 5 — 3t + wcost:

s

L{5- 3t +mcost} =52 ({1} - 3L {t} + 7L {cost} = Z11

» |
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2° Shifting property. If £ {f} = F(s) then Z {e® f(t)} = F(s — a).

To prove this property, consider
o0
ZL{e"f(t)} :/ e f(t)e *t dt
000
= / e~ (-t (1) dt (let p=3s—a)
000
- / e P f(t)dt = F(p) = F(s — a).

0

Example 7. Now, to find, e.g., .Z {€*sint} we do not need to evaluate the integral:

3{63‘ Sillt} = m 5

since & {sint} = ;;%



3° Time scaling. Let £ {f(t)} = F(s) then
2{f@)==F(2),

for any a > 0.

To prove, we start again with the definition
o0
2@} = [ flanetat
0

and use the change of variables at = 7, from where d¢t = dr/a. Note that for a > 0 the limits
of integration will not change:

1 . i o 1 s
Z{f(n)} = 5/0 f(r)e i dr = =F (2)
as required. Note that if we allow any sign for a # 0 then (prove)
1 s
=—F(-).
2 {fat) = oF (7)

Example 8. Find .# {cos 3t}. By the previous property and the fact that . {cost} = 757 we find

s/3 s

1
3(s/3)2+1 2432

Z {cos3t} =

4° Differentiation of the frequency. Let & {f(t)} = F(s). Then
Z{tf(t)} = —F'(s).

Or, more generally,

L{"f(t)} = (-1)"F™(s), neN.

To show that this is true, consider the derivative of F(s):
o0
P = [ (-osea
0

which implies the property.

Example 9. What is & {t*}? We can evaluate the integral, but it is easier to find, using Property
4 and the fact that £ {1} = 1/s, that

2{8%) = (-1)° (%): =



5° Differentiation. Let £ {f(t)} = F(s). Then
Z{f'(t)} = sF(s) - f(0).

For the proof, consider
o0
2{rer= [ rwea
0

and use the integration by parts
Z{f @)} = fO)IP + S/O f)e™tdt = —f(0) + s Z {f} = sF(s) ~ f(0).

We can generalize this property to differentiation of any order. For instance, to find .Z {f”(t)}
just consider f”(t) as the derivative of f/(t) for which we already found the Laplace transforin
sF(s) — f(0). Hence, according to the property,

ZL{f'®)} = s(sF(s) - £(0)) - f'(0) = s*F(s) = s£(0) ~ £(0).

It is useful to make a separate table with properties and Laplace transforms of frequently occurring
functions.

Inverse Laplace transform. If we are given a function f we can find its Laplace transformm by
evaluating the corresponding integral:

F(s) = Z{f()}.

It is also possible to go in the opposite direction: We are given F(s) and asked to find a function f(t),
for which f = .1 {F}, i.e., find the inverse Laplace transform. This is possible due to the following
important uniqueness theorein

Theorem 10. If two functions f and fo have the same Laplace transform, then they coincide at
every point t at which they both are continuous.

There exists a general formula for finding the inverse Laplace transforn:

2mi T—oo Jo i1

1 y+iT
L YF} = — lim / et F(s)ds,
2

but we will never use it (if you’d like to understand what this formula mneans, consider taking a course
on Complex Analysis).

Our algorithmm of finding the inverse Laplace transformn is by using the table. As an exanple, we

know that
s

s2 416"

g—l {—.92;3-—16} = cos 4t.

While finding the inverse Laplace transformn it is important to remember that it is also linear.

Therefore,
1 4-1 1 4 1
-1 1 4 1 :
£ = =_ ¢ - bl .
{32+16} {s2+42} 4 {52+42} 4sm4t

More about it in the next lecture.

Z {cosdt} =

This means that




Table of the most useful Laplace transforms

In this section I list the Laplace transformns of the most frequently encountered functions.

f(£), t € [0,00) F(s)=2{f}
1 1
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n R
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w
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$° +w
w
sinhwt, w € R = 3
s2 —w
s
coshwt, w € R PR
w
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Laplace transform. Solving linear ODE

I will explain how to use the Laplace transforn to solve an ODE with constant coefficients.
The main tool we will need is the following property from the last lecture:

5° Differentiation. Let £ {f(t)} = F(s). Then
Z{f'(t)} = sF(s) - f(0), Z{f"(t)} =s"F(s) — sf(0) - f'(0).
Now consider the second order IVP

¥ +py +qy = f(t), y(0) =yo, ¥'(0) = u1. (1)

I consider the second order equation here, but it should be clear that similar considerations will lead
to a solution of any order linear differential equation with constant coefficients.
Apply the Laplace transform to the left and right hand sides of ODE (1):

Z{y" +py' +qu} = 2 {f}
L{y"y+pL{V} +9 2 {y} = Z{f}
s2.Z {y} — sy(0) — y'(0) + ps & {y} — py(0) = £ {f}
(s> +ps+q) L {y} — syo — w1 —pvo = L {f}
(s +ps + q)Y (s) — syo — 1 — pyo = F(s) =
F(s) + syo + y1 + pyo
s24+ps+q

Ll

Y(s)=

where I used the notation Y(s) = £ {y} and F(s) = £ {f}. The property of linearity was used,
and also I used Property 5° to simplify .Z {y”} and & {¢'}. Since, due to Property 5°, the Laplace
transforin turns the operation of differentiation into the algebraic operation multiplication by s, then,
instead of the initial differential equation, I end up with a simple algebraic equation for Y(s). The
final step (and usually the most complex one) is to restore y(t) from Y (s), i.e.,

y(t) =2 1 {Y(s)}.

Note that to apply this approach, we need the initial conditions specified at the point zero. In
general, if the initial conditions are not given, we can always put two parameters y(0) = yo and
¥’ (0) = y; such that the solution will be a two parameter family.

Example 1. Solve using the Laplace transform
gy —y=e" wu0)=2

Application of the Laplace transforin leads to




therefore,

2 1 2 1 1 1
Y(s):s—1+(s—1)(s—3) :s—1_5(3—1 “s—3>'

Using the table to find the inverse Laplace transforin, we obtain

1 3 1
y(t) = £ {v}= 2e! — —(ef - 63‘) = et 4 et
2 2 2
Example 2. Solve
y -3y +2y =€ y(0)=1,y(0)=0.
Applying the Laplace transformn, I find

s?2 —6s+10
(s=3)(s=2)(s-1)"

(52—3s+2)Y—s+3=£ = Y(s) =

To find the inverse Laplace transforin we will need first simplify the expression for Y(s) using the
partial fraction decomposition. Note that Y(s) is given by a rational function, i.e, a polynomial
divided by polynomial, moreover, the highest degree of the numerator is strictly less than the highest
degree of the denoninator. Hence, as we all learnt in Calculus,

Y(s) = s — 6s+ 10 A N B + C
C(s-3)(s-2)(s-1) s-3 s-2 s-1’

To find A, B and C here is especially simple. For examnple, for A multiply both sides by s — 3 and
plug s = 3 into the expressions to obtain A = % In a similar way B = —2 and C = %
Therefore, using the linearity of the inverse Laplace transform, we find

We)= LY} = Dt~ 26" 4 Lot

Example 3. Solve
y" — 10y +9y = 5t, y(0) = -1, y'(0) = 2.

Applying the Laplace transform to both side, we find

5+ 1252 — §°

5
Zpee) Y -2-10=—= Y()= 5—"T—+——.
(s 0s +9)Y +s 0 R (s) 29— 1)

To find the inverse Laplace transforin we will need first simplify the expression for Y (s) using the
partial fraction decomposition:

54 12s% — 53 A B C D
$2(s=9)(s—-1) s s s=-9 s-1
We find 5 31 50
B=-,D=-2,C=—,A=—.
9’ ’ 81 81
Therefore, using the linearity of the inverse Laplace transforin,

50 5t 31 5
y(t)—81+ TN 2¢".

+



Example 4. Solve
y" — 6y + 15y = 2sin3t, y(0) = -1, y'(0) = —4.

We have

—s3 4+ 252 -9s5+24 __As+B Cs+ D

2
—6s+ 15)Y 2 = .
(s s Yts (s24+9)(s2-6s+15) s2+9  s2-6s+15

T s249

= Y(s) =

To find the constants, we need to simplify the expression on the right (find the common denominator)
and equate the coefficients at the equal powers:

A+ C=-1

$2: ~6A+B+D=2
s':15A-6B +9C = -9
s9: 15B + 9D = 24

The solution is

1 1 11 5
A= — BE_— O DS,
10’ IO’C 10 2
Heuce, we got
1 (s+1 —11s+ 25
Y(s)= — .
(s) 10<s2+9 32—63+15>

Now we need to find the inverse Laplace transform. Let us start with the first term:

a[s+1 — o1 = 1 _ -l S lf—l 3 _ 1
=4 {32+9}_ {s2+9+s2+9 . 2+9 +3 219 —cos3t+331113t.

The second term is slightly more involved. Rearrange the expression in the following way (remember
that we can always add and subtract the saine expression and multiply and divide by the sane
expression different fromn zero):

—11s+25  —1ls+25

s2—65+15 (s-3)2+6
_ —11{(s-3) -8
T (s-3)2+6

(s—3) 8 V6

= U826 63216

Now

—11s+ 25 8
K7 b b QRS | P 6t — —e% si 6t.
{32 ~63+15} €3 cos V6 \/ée sin V6

The final answer hence is

1 1 8
t) = g'l Y= — 3t + —sin 3t _11_3L 6t — 3t . 6t ).
y(t) {Y} 0 (005 3 sin 3t cos V6 _\/66 sin V6



