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7.1 The Fourier Integral Representation

THEOREM 1
FOURIER
INTEGRAL
REPRESENTATION

Refer to Section 2.2 for the
definition of piecewise smooth.

To help us understand and appreciate the topics of this section, let us recall
from Section 2.3 the Fourier series representation theorem. Given a 2p-
periodic function f, we have

(oo}
(1) flz) =ap+ Z (au cos L + by sin ﬂ:r) .
n=1 p p

where

= [ s
ag = — (1) dt,
0= 2, .
1 [P 1 /P
an:_/ f(t)cosEtdt, bn:—/ f(t)sinﬁztdt.
PJ-p p PJp p

Now suppose that f is defined on the entire real line but is not periodic.
Can we represent f by a Fourier series? It turns out that we no longer have
a Fourier series representation, but a Fourier integral representation. The
answer is given by the following important theorem.

Suppose that f is piecewise smooth on every finite interval and that
f:o |f(x)]dr < oo. Then f lLas the following Fourier integral repre-
sentation

2yiani(x) = /CXJ [A(w) coswr + B(w) sinwr] dw (—0c < z < 20),
Jo

where, for all w > 0,

@) A= % /_Z FtYeositdi 1By ;1; /_ c: Fl2)siniot dt.

The integral in (2) converges to f(z) if f is continuous at z and to I—(ﬁ—)t—fiﬂ
otherwise.

Note the similarity between the Fourier integral (2) and the Fourier series
(1). The sum in (1) is replaced by an integral in (2), and the intcgrals from
—p to p that define the Fourier coefficients are replaced by intcgrals from
—00 to oo in (3). Also, in (3), the “Fourier coefficients” are computed
over a continuous range w > 0, whereas the Fourier coefficients of a periodic
function are computed over a discrete range of values n =0, 1,2, ... .

As with Fourier series, for Theorem 1 to hold we imposed sufficient, con-
ditions on f, including the condition

[ 1@ < oo,

e
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which is expressed by saying that f is integrable on the entire real line.
This condition also ensures the existence of the improper integrals defining
A(w) and B(w) in (3).

We will omit the proof of Theorem 1. which involves ideas similar to
those in the proof of the Fourier series representation theorem (see [1]). The
fact that the series in (1) is changed into an integral in the Fourier series
representation as the period tends to infinity can be motivated as follows.

Suppose that f is an integrable function on the real line. Restrict f to a
finite interval (—p, p). Take the part of f that is inside (—p, p) and extend
it periodically outside this interval. The periodic extension agrees with f
on (—p,p) and has a Fourier series as in (1), which represents f(z) for x
in (—=p,p). The question now is, What happens to this representation as
p — o? To answer this question, let us investigate the Fourier coefficients
as p — 00. Since f is integrable, it follows that ag — 0 as p — oo. Also,
we can draw a connection between a,, and b, and A(w) and B(w) as follows.
The integrability of f implies that the integrals in (3) can be approximated
by merely integrating over the (large) finite interval (—p, p). The difference
is just the tail ends of the integrals, which can be made arbitrarily small.
Thus, for large p, we can write

0

an ~ l/ f(t) cos "yt = Alwn) Aw (by (3)),
PJ-o p

where w, = (n7)/p and Aw = %. Similarly, b, = B(w,) Aw. Plugging
these values into (1), we see that for very large p, we have

x
(4) f@) = > (A(wn) coswns + Blwy) sinwyz) Aw.

n=1
We have conveniently used a notation that suggests that the sum in (4) is
a Riemann sum. This sum samples the integrand of (2) at equally spaced
points w, with a partition size Aw being precisely the distance between two
consecutive w,. The fact that n goes to infinity in (4) indicates that this
Riemann sum is not over a finite interval but (regardless of p) spans the
entire nonnegative w-axis. As p — oo, Aw — 0 and this Riemann sum
converges to the integral in w, given by (2).

EXAMPLE 1 A Fourier integral representation
Find the Fourier integral representation of the function

1 oifjz| <1,
fla) = { 0 otherwise.
Solution From (3),

1

Alw) = %/_m f@) coswt dt = ;F /

coswt dt = {
J-1

. 1 .
smwt} 2sinw
1

nw W
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cos X

/2 O /2

Figure 1 f(z) in Example 2.

(Strictly speaking, we should treat the case w = 0 separately. However, as you can
check, the formula that we obtained for A{w) is valid in the limit as w — 0.) Since
f(z) is even, B(w) = 0. For |z] # 1 the function is continuous and Theoremn 1 gives

oy =2 [ omeconn
T Jo

w

For z = +£1, points of discontinuity of f, Theorem 1 yields the value 1/2 for the
last integral. Thus we have the Fourier integral representation of f

. 1 if 2l <1,
9 % dine - | '
_/ SNWCOSWE o = ¢ 1/2 ifl&l-"l
TJo W 0 if jzf >
n
In Example 1 we have used the evenness of f to infer that B(w) = 0 for

all w. Similarly, if f is odd, then A(w) = 0 for all w. These observations
simplify the computation of the Fourier integral representations of even and
odd functions.

Theorem 1 can be used to evaluate interesting improper integrals. For
example, setting x = 0 in the integral representation of Example 1 yields
the important integral

(5) /oosmwdwﬂ,
Jo 2

known as the Dirichlet integral, after the German mathematician Peter
Gustave Lejeune Dirichlet (1805-1859).

EXAMPLE 2 Computing integrals via the Fourier integral

Show that
2 / ”
T Jo

Solution Let f(x) denote the function defined on the right side of this equality, as
shown in Figure 1. It is even and vanishes outside the interval [—n/2,7/2]. Thus
B(w) =0 for all w > 0, and

Tw
cos N

1—w?

cosz if o} < /2,
0 if |z} > 7/2.

coswir dw = {

5 /2
Alw) = % /0 / cos & cos wir d (by evenness)
1 n/2
= ;/ [cos(1l + w)z +cos(l —w)x]dr  (Trig identity)
_ %[bm[ l1 :c:w/Q] sm[(l1 _c:)rr/2]j (for w £ 1)
_ l[cos(wr/Q cos(w7r/2)] _ 2 cos(wn /2)
Tl 14w 1-—w (1~ w?)
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Figure 2 A(w) is continuous.

Figure 3 Graph of Si(x)
Even though there is no ex-
pression of Si(z) in terms of
elementary functions, you can
still compute its numerical
values using a power series ex-
pansion (see Exercise 23(c)).
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The case w = 1 should be treated separately. It yields A(1) = 1/2 (check it!). As
Figure 2 shows, the graph of A(w) is continuous at w = 1. In fact, you can check
that lim,—; A(w) = A(1) = 1/2. Now using (2), we get

flz) = —2—/00 Mcoswrdw.
0

™ 1 —w?

Replacing f(x) by its formula, we get the desired identity. |

Partial Fourier Integrals and the Gibbs Phenomenon
In analogy with the partial sums of Fourier series, we define the partial
Fourier integral of f by

14
(6) S.(x) = / [A(w) coswaz + B(w) sinwz]dw (for v > 0),
Jo
where A(w) and B(w) are given by (3). With this notation, Theorem 1
states i N
lim S,/(IZ') — f(fl?+/ +f(1’_) )
y—00 2

Like Fourier series, near a point of discontinuity the Fourier integral exhibits
a Gibbs phenomenon. To illustrate this phenomenon, we introduce the sine
integral function

(7) Si(a:)z-./: Si;]—é dt (—o0 < 2 < 0).

Si(x)

/2

-

Y

—n/2

Because of its frequent occurrence, the function Si(z) is tabulated and is
available as a standard function in most computer systems. See Figure 3
for its graph. Trom (5), it follows that

OO 3
(8) lim Si(z) = / il—tr—l—fdt: T
4]

z—00 2
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EXAMPLE 3 Gibbs phenomenon for partial Fourier integrals

{a) Show that the partial Fourier integral of the function in Example 1 can be

written as

S, (z) = %{Si(u(l + ) +Si(v( — ).

L@l {b) To illustrate the representation of the function by its Fourier integral, plot
several partial Fourier integrals and discuss their behavior near the points r = %1.

Solution We have from Example 1 and (6)

S.(z)

2 [Y sinwcoswz

— —_ dw

. 0 w

1 [Ysi 1 1 [Ysi 1-—

_/ sinw(l + z) dw+—/ sinw(1 — ) do
™ /9 w ™ Jo W

(Let u = w(1 + x) in the first integral, and u = w(1 - z) in the second.)

1 v(l+zx) sin v(l—-z) sin
—[/ “du+/ 22 du
™ 0 u 0 u

;l_l—{Si(u(l + 2)) + Si(v(1 — 2))], by (7).

(b) In Figure 4 we have plotted the graphs of S,(x), for v = 1, 4, 7, 10, using
the sine integral function and the formula given by (a). Observe how the partial
integrals approximate the function in a way reminiscent of the approximation of a
periodic function by its Fourier series. In particular, note the Gibbs phenomenon at
the points of discontinuity of f where the partial integrals overshoot their limiting

values.

Figure 4 Approximation by
partial Fourier integrals and
Gibbs phenomenon.




Section 7.1 The Fourier Integral Representation 395

Exercises 7.1

In Ezercises 1-12, find the Fourier integral representation of the given function.

f(.z-):{l if —a <z < a,

0 otherwise, flx) = 1 if0<z <1,

0 otherwise.
where a > 0. X

-1 if-1<x<0,

B

7 y‘—ﬁ—\ p

13. (a) Use Example 1 to show that

* sinw cosw
—dw =
0 w

(b) Use integration by parts and (a) to obtain

* gin?w T
5 dw = —.
0 w 2

14. Use the identity sin®w + cos?w = 1 and Exercise 13(b) to obtain

1=

[Hint: sin®w = sinw 1 cos? wsin®w =sin® w + i sin? 2w.]

ooy | 1=cosz if—7/2 <z <7/2, 1=z 1<z <,
flz) = { 0 otherwise. flz) = { 0 otherwise.
S—
—
5 6.
N ol 1=z if-l<z<],
flz) = e =) = { 0 otherwise.
T 8.
. 0 if-1<z<1
1 if0<z <], iy . : ’
fla) = { 0 otherwise. fley=q 1 ifl< |5L1 <2
0 otherwise.
9 10.
z if -1<z<1, .
2—-z ifl<x<?, o) oz if-l<e <,
f(T) = 22—z f-2<z< -1, f(l) { 0 otherwise.
0 otherwise.
11. 12.
.y f osinz if0<z<m, N Jem ifxr>1,
flz) = { 0 otherwise. flz) = { 0 otherwise.
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7.2 The Fourier Transform

FOURIER
TRANSFORM

INVERSE FOURIER
TRANSFORM

We will use the complex exponential function to write the Fourier integral
representation of Section 7.1 in complex form. This new representation fea-
tures an important pair of transforms: the Fourier transform and its inverse
Fourier transform. As you will see in this section, the concept of transform
pairs provides a convenient way to state the fundamental operational prop-
erties of the Fourier transform, which are very useful in solving boundary
value problems.

Consider a continuous piecewise smooth integrable function f. Starting
with the Fourier integral representation, we have

1 oC (oo}

flx) = -/ / f(t) (coswt coswzx + sinwt sinwz) dt dw
TJo J-oo

(cos(a — b) = cosacosb + sinasinb)

_ %[)m/_z,f(t)cosw(z—t)dtdw

1
(cosu = —( W eTuY)
— / / f t) zw(r t) te —iw(z— t))dtdw
= — / / f(t)eED didw + — / f(t)e"i"’(“:”") dt dw.
2 Jo  Joso 27 Jo S

If we change w to —w in the second term and adjust the limits on w from
—o0 to 0, we obtain, after adding the two integrals,

f(z) = -2];/_00 /_°° f(t)ew(m"t) dt dw

f’g\u)

I R TS "
— Wwr ] ) It X
= ~———,.._27r /_me T -/-oo f(t)e dt dw

Thhis is the complex form of the Fourier integral representation, which
features the following transform pair:

(1) fr=—= [~ foe s (-0 <w <o)

(2) f(x) \/— / e f(w (—00 < 2 < 00).
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Figure 1 Graph of f in Ex-
ample 1.

A
f(w)
a\2n
~n/a n/a ®

ol \/J
Figure 2 Graph of f in Ex-
ample 1.
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There arc other conventions for the Fourier transform. For example, we could
choose f(w = [_ f(x )e‘“"rdl and then the inverse Fourier transform

flz) = f_ €% f(w) dw. In the definition of f we have used z as a
variable of integration, mstead of t. The symbols F(f)(w) and F~1(f)(z)
are also used to denote the Fourier transform and its inverse, respectively.
Sometimes, to be more specific, we will write F(f(z))(w) instead of F(f){w).
According to ‘Theorem 1 of Section 7.1, if f is not continuous at x, the left
side of (2) is to be replaced by (f(z+) + f(z—))/2. The integral for the
inverse Fourier transform may not exist as a two-sided improper integral;
in general, this integral should be computed as a Cauchy principal value:
f(z) = 712—; limg—co [, €% f(w) dw (see [1], Section 11.1).
Putting w =0 in (1), we find that

becomes f

o

F(0) = | fl@)ds.

1
V2

Thus the value of the Fourier transform at w = 0 is equal to the signed area
between the graph of f(z) and the z-axis, multiplied by a factor of 1/v27 .

EXAMPLE 1 A Fourier transform
(a) Find the Fourier transform of the function in Figure 1, given by

o ={ 5

What is f(0)? (b) Express f as an inverse Fourier transform.

if jz| < a,
if |2] > a.

Solution For w # 0 we have

Q.

flw) = / flx)e™ ™% dr = T (g
V —a
S ¢ ?_smaw
V2miw —a oW

For w — 0 we have f(0) = = /%, dz =a\/2/. Since

 lim /_Q_bmawi \/7 f
w—0

it follows that ‘)‘A'(w) is continuous at 0 (Figure 2), and we may write

-~ 2 sin aw
flw) =/~
T oW

Jim f(w)

for all w.
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0
Figure 3 Graph of f in Ex-
ample 2.
A
@]
b
2n
- ©
-5 0 5

Figure 4 Graph of |ﬂ in Ex-

ample 2.

The Fourier Transform and Its Applications

{b) To express f as an inverse Fourier transform, we use (2) and get

L[ e 25 1 [ s
f@) = —= / ghony | 2PN gy =~ / s 2 gy
Vor J e T w T J oo w
o0

1 . sin aw 1 [ coswz sin aw
= = (coswz — 1sinwr) dw = — — dw
T ) oo w T/ oo w

?

because sinwz 24 s an odd function of w and so its integral is zero.

Not surprisingly, when a = 1, this representation coincides with the integral
representation we found in Example 1 of Section 7.1. [ |

The Fourier transform in Example 1 is continuous on the entire real line
even though the function has jump discontinuities at x = +a. In fact, it
can be shown that the Fourier transform of an integrable function is always
continuous.

In our next example we will use the absolute value of complex numbers.
Let us recall that if z = a + b, then |2| = Va2 +b6%2  In particular, if
2z = e"¥ then

le™| = |cos(aw) — i sin(zw)| = \/cos2(xw) +sin?(zw) = 1.

EXAMPLE 2 Computing Fourier transforms

Find the Fourier transform of the function in Figure 3,

: e ifz>0,
f(x)'_‘{o if2<0.

Solution We have

~ 1 R . 1 co (1+iw)
.(w — / e—ze—zwx diL — / e—:t +iw dil?
f : ) \v4 2 0 vV 27 0

>}
_ -1 —iwze-—:r

V2r(1 + iw)

Since le “*| = 1, it follows that limg—.co |e‘“‘(1+i“)| = limy oo ™% = 0, and so

0

f(w) . 1 o l—iw
CV2r(l+iw) VEr(l4w?)

Figure 4 shows the graph of the absolute value of jA Here again, it is worth noting
that f and | f | are both continuous even though f is not. ]

Example 2 illustrates a noteworthy fact that the Fourier transform may
be complex-valued even though the function is real-valued. Also, the Fourier
transform is continuous but not integrable, not even as an improper two-
sided integral. In this case, the integral in (2) for the inverse Fourier trans-
form should be computed as a Cauchy principal value. Indeed, you can
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check that, at z = 0, we do have 1/2 = (f(0+) + f(0—))/2, and the Cauchy
principal value of the inverse Fourier transform yields
I —
lim X dw

1 RN
lim —— dw = .
q,.l.l‘cx-) /27'{' ,/.-(1 f(w) W Paape /‘““27_‘_ J—a /271'(]. + w?)

=0

. [ \S—
11.1[ @ 1 do — i ¢ w l} 1
= — um W —1 = —=.
2ma—oo L J_, 1 + w? Jooo 1+ w? o 2

As defined by (1), the Fourier transform takes a function f and produces
a new function f, and the inverse transform recovers the original function
f from f. This process makes of transform pairs a powerful tool in solving
partial differential equations. As we will see in the following sections, the
idea is to “Fourier transform” a given equation into one that may be easier
to solve. After solving the transformed equation involving f, we recover the
solution of the original problem with the inverse transform. To assist us in
handling the transformed equations, we develop the operational properties
of the Fourier transform.

Operational Properties

We shall investigate the behavior of the Fourier transform in connection
with the common operations on functions: linear combination, translation,
dilation, differentiation, multiplication by polynomials, and convolution.

The Fourier transform is a linear operation; that is, for any integrable func-
tions f and g and any real numbers a¢ and b,

Flaf +bg) = «F(f)+bF(g).

Proof FExercise 18. ]

(i) Supposc f(z) is piccewise smooth, f(z) and f'(z) are integrable, and
f(z) — 0 as || — oo, then :

F(f) = iw F(f).

(i1) Ifin addition f”(z) is integrable, and f'(x) is piecewise smooth and — 0
as |x| — oo, then

F(f") = iwF(f) = —w*F(f).

(iii) In general, if f and f*)(z) (k=1,2, ..., n — 1) are piecewise smooth
and tend to 0 as |2] — oo, and f and its derivatives of order up to n are
integrable, then

F(f™) = (w)"F(f).
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CONVOLUTION

Proof Parts (ii) and (iii) are obtained by repeated applications of (i). To prove
(1), we use the definition of F(f’) and integrate by parts. To simplify the proof. we
suppose further that f is smooth. Then '

\/—12_7; /:o: f(z)e ™ dx
= =@ e - i) [ s ail

= 0+ iwF(f) (since f(x) — 0 as x| — oc, and ' " -1). B

F(f ) w)

(i) Suppose f(x) and zf(x) are integrable; then
5/ d :
Flaf@)w) =i [f] @) =i = F(Nw).
(ii) In general, if f(z) and 2™ f(x) are integrable, then

Fla"f(z)) = i [f] i

Sketch of Proof Part (ii) follows from (i). To motivate (i) we will assume that
we can differentiate under the integral. Then

1 1 G—iw.ﬂ

37 d 1 o . '__°°,>(_ 4
[f] (W) = -J;\/—E_;/_m,/(x)e do= = | J)gpe e

P 0 X
\/;"' / vflz)e” " de - —iF(rf(a))(w),
™ .J—00

and (i) follows upon multiplying both sides by 4. This proof is valid if for example f
is smooth and vanishes outside a finite interval. For an arbitrary function f, we can
approximate f by functions that are smooth and vanish outside a finite interval.
The details are beyond the level of this book and will be omitted. ]

Convolution of Functions
We expand our list of operational properties by introducing the convolution
of two functions f and g by

(3) fro@=—= [ o -ngtar

(The factor ——\/]2—_; is merely for convenience. If we drop it from the definition
of the convolution, it will reappear in its Fourier transform.) The convolution
of f and g is a binary operation, which combines translation, multiplication
of functions, and integration. Its effect on the functions f and g is difficult to
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explain directly, as the following examples illustrate. (It does have a simple
description in terms of the Fourier transform, as we will see in Theorem 4.)
Let us first observe that convolution is a commutative operation; that is,
f*g(z) = g* f(z). This follows by making a change of variables (¢ « t — z)
in (3) (Exercise 55).

EXAMPLE 3 Convolution with the cosine

Suppose that f is integrable and even (f(—z) = f(«) for all ) and let g(z) = cosaz.
Show that, for all real numbers a: f * g(x) = cos(az) f(a).

Solution From the definition and the fact that f x g = g x f, we have

1 oo

frg(x) = (t) cos[a(x — t)] dt

Vo o’
= L/oo f(t)[ cos(ax) cos(at) + sin(az) sin(at)] dt
= 7l os(azx) cos{a in .
Since f is even, the product f(t)sin at is odd; hence ]fooo f(t)sinat dt = 0, and so
fro(@) = costar) = [ f(0)cos(ot)d
glz) = azx N cos(«
= cos(ax) \/% /:: f(t)[ cos(at) — isin(at)] dt

~

cos(ax) 7——127; /jo f(t)e~ ! dt = cos(az)f(a). ]

EXAMPLE 4 Convolution as an average
Forn=1,2, ..., let go(2r) = ny/m/2if |z| < 1/n and g,(z) = 0 otherwise. Suppose
that f is continuous on (—oco, c0) and let F' denote an antiderivative of f. Show
that

Flz+1/n)~ F(z —1/n)

frgnle) = 2/n '

Solution From the definition, we have

[o%) 1/n
froe) = o= [ flo-tid =] /_l/n.f(a:~t)dt

n z+1/n n
= 5[ @ =3 (Fe 1w - Fa-1m),

2 x—-1/n 2

where we have used the change of variables t « z — ¢ in the second integral. Thus
the desired result follows. ]

We mention some noteworthy properties of the convolution in Example 4.
The interval of integration, (z — 1/n, z+1/n), in the expression f x g,(z) =
z ;_111//: f(t) dt is centered at x and has length 2/n. Thus the convolution
f*gn(x) is the average of the function f over the interval (x —1/n, x+1/n).
As the length of the interval shrinks to 0 (that is, as n — 00), we expect this
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average to converge to f(x). In other terms, we expect limp .o, f * gn(z) =
f(z). This is indeed the case, since we have

lim f*xg,(z) = lim g(F(IL +1/n) — F(z — 1/n))

o - E_illim [F(.T: +1/n) — F(x) N F(x+(=1/n)) — F(l)]
T 21/m=0 1/n (—1/n)
= Fla),

by definition of the derivative. But F’(z) = f(z), by the fundamental theo-
rem of calculus; and 50 limy, o0 f * gn(z) = f(x).

The fact that the convolution of f with a sequence of functions converges
to f will be at the heart of solutions of important boundary value problems,
such as the Dirichlet problem in the upper half-plane and the heat equation
of the real line. In each one of these problems, the sequence of functions, or
kernels, will be different but it will share properties similar to the following
properties of the sequence (gn) in Example 4:

¢ go(x) > 0 for all z. The area under the graph of g,(z) and above the
z-axis is equal to V2w, for all n > 1. That is, [*_gn(z)de = V2m.

Moreover, the area is more and more concentrated around 0. That is,
limy, o0 ff gn(z) dz = 01f 0 is not in [a, b].

e On the Fourier transform side, we have lim,_q gn(w) = 1 for all w
(Exercise 8).

Convolutions can be tedious to compute directly from definition (3). One
way to avoid a direct computation is to use the following important property
of convolutions and the Fourier transform. The process is illustrated by
Example 5 below.

Suppose that f and g are integrable; then

F(f*g)=F(NHF(g).

Theorem 4 is expressed by saying that the Fourier transform takes con-
volutions into products.

Proof Using (3) and (1), and then interchanging the order of integration, we get

F(frxghw) = oz —t)e ™" da g(t) dt

1 fo.9) 1 o0

Van ,/._oo V2n / o
1 [ 1 [ ; ;

or / ?/ fluye ™™™ due ™" g(t) dt

vV J—oo V &7 oo

(u=2—-t, du=dr)

F(IHW)F(g)(w) . |

Il
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Figure 5 Graph of f.

Figure 6 Graph of f « f.
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EXAMPLE 5 Fourier transform of a convolution

Consider the function f(z) == 1 if |z| < 1 and 0 otherwise. The graph of this
function is shown in Figure 5. From Example 1, we have

&\ [2sinw
fLw)—\/; —

We want to compute f * f, the convolution of f with itself. Instead of computing
directly from (3), we will use Theorem 4 as follows. We have

Iy 2 sin®
F(f » f)(w) == f(w)2 _ 7_(%111;;

w

Using the inverse Fourier transform, with the help of the table of Fourier transforms
in Appendix B, we find

frfla)=F" (351“2‘”> = { E(-1) e <2,
T 0

w? if |z| > 2.

The graph of f « f(x) is shown in Figure 6. Note that f * f is continuous even
though f is not. [ ]

The rest of this section is devoted to studying the Gaussian function
f(z) = e~*” and its Fourier transform. This function plays a key role in the
solution of the heat equation on the line (Section 7.4). We need the famous
improper integral

(4) 1:/006—1'2@:\/7?.

—00

We have computed this integral in Section 4.7, Exercise 35, in connection
with the gamma function. Let us give here a more direct proof. We square
the integral, use polar coordinates (r? = 22 + 32, da dy = r dr df), and get

o 5 OO0 " o0 OO P
I? = / e dm/ eV dyz/ / e (x2+92)cim‘(ly
—0o0 J —00 —00 J —00
2T oo 2 2 1 ) o
= / / e " 'rdrd9:/ ——e "
o Jo 0 2
1 27
= —/ dé =,
2 Jo

and (4) follows upon taking square roots.

de

0
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THEOREM 5
TRANSFORM OF
THE GAUSSIAN

Let a > (0. We have

Proof We give an indirect proof based on the operational properties of the Fourier

2
transform. Let f(z) = e~z . A simple verification shows that f satisfies the
first order linear differential equation

f(z)+azf(x)=0.
Taking Fourier transforms and using Theorems 1, 2, and 3, we get

wf(w) +a%f](w) =0.

Thus f satisfies a similar first order linear ordinary differential equation. Solving
this equation in f, we find

;\((u') = ‘46_“"}77
where A is an arbitrary constant. To complete the proof, we must show that
4 = \/LE We have
e 1 . az?
A = 0= ——= e” 7 dr
f(0) Ve )
1 &2 2
= ———/ e " du {u= \/(—Ta:, \/:(lu—dm)
ar J_o 2 a
1
- (by (4)). &

Replacing a by 2a in Theorem 5 yields

2

F (e"‘“'2> (w) = —\/1—_ e e

. (a>0).

Taking a =1 in Theorem 5 gives

:7-' (e”%i) (w) = e ‘

xr

This remarkable identity states that ¢ 7 is its own Fourier transform. Is
this the only function with this property? See Exercise 59 for an answer.
Theorem 5 can be used to compute some interesting integrals.

N
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EXAMPLE 6 A special improper integral
Writing explicitly the Fourier transform in Theorem 5, we find that

(LI‘) 2 —_— .—42

! /00 e~ 7 (coswz —isinwx)dx ! /00 - zdx !
—— 0S8 WT — 1Sinwr = — ¢ T coswrdr = —e” .
V27T —0C V27T. 20 \/a

Taking w = 1 and a = 2, we get the interesting identity

00
—x2 1
/ e~ cosxdr me T, ™

— 00
In the next section, we develop the Fourier transform method for solving
partial differential equations on the real line. We will use this method to
solve boundary value problems associated with the heat and wave equations,

and a variety of other important problems on the real line and regions in the
two dimensional space.

Exercises 7.2
In Exercises 1-7, (a) plot the given function and find its Fourier transform.
QQ (b) If f is real-valued, plot it; otherwise plot |f|.

1. 2. F—rg

4 -1 if —1<a <0, [ 1-a? iz <1,
flz) = 1 if0<x <, flx) = 0 otherwise.
0 otherwise. -

[ 3. 4, ! B
v sinz iffx <, N ifjxl < g
fla) = { 0 otherwise. fla) = { 0 otherwise.

> 6. ,,
@) - { -z ifje] < 1, flz) = { 1- e <,

0 otherwise. 0 otherwise,

where a > 0.

fla) = 20 if 0 <z <10,

Y771 0 otherwise.

8. Let gn(2) be as in Example 4. Compute g, (w) and show that lim;, e Gn(w) = 1
for all w.

9. Compute f(()) in Exercises 1 and 7 by looking at the graph of f(z).

10. Reciprocity relation for the Fourier transform.

(a) From the definition of the transforms, explain why F(f)(z) = F~(f)(—x).
(b) Use (a) to derive the reciprocity relation F2(f)(z) = f(—z), where F2(f)
FF().

(c) Conclude the following: f is even if and only if F2{f)(z) = f(z); f is odd if
and only if F2(f)(z) — —f(a).

(d) Show that for any f, F(f) = f.



