THE LAPLACE
TRANSFORM

%LT-opgaven

Should I refuse a good dinner simply because I do not understand the
process of digestion?

‘OLIVER HEAVISIDE
[Criticized for using formal mathematical manipulations, without un-
derstanding how they worked.]

In the previous chapter we introduced the Fourier transform and the Fourier
sine and cosine transforms and showed their utility in solving various bound-
ary value problems for partial differential equations on unbounded domains.
The problems to which these transforms applicd were typically treated in
Cartesian coordinates.  Another transform that can frequently be applied
with success is the Laplace transform, our first topic in this chapter. If
onc of the variables occurring in a problem ranges over a half-line [0, c0), we
can often make progress by performing a Laplace transform with respect to
this variable, in much the same way that we did with the sine and cosine
transforins.  Because of the importance of this transforin in other settings,
we present a sclf-contained treatment, including the solution of initial value
problems for ordinavy differential equations. For problems with other than
Cartesian gecometry, there are yet other transforms that are more natural
and therefore more useful. For example, in unbounded problems with radial
symmetry in cither the plane or the space, so that the appropriate coordi-
nates arc polar, cylindrical, or spherical, the natural transform for the radial
variable (7 or p) involves Bessel functions. This transform, which depends on
the ovder v of the Bessel function involved, is known as the Hankel transform
of order ».



The Laplace Transform

As a convention, functions
J.y.... are defined for ¢ > 0
and their transforms I, G, ...
arc defincd on the s-axis.

THEOREM 1
EXISTENCE OF THE
LAPLACE
TRANSFORM

In this section we present the definition and basic propertics of the Laplace
transform. As a warm-up for the applications with partial differential equa-
tions, we will usc it to solve some simple ordinary differential cquations.

Suppose that f(t) is defined for all t > 0. The Laplace transform of
f is the function

(1) £(f)(s) = /0 " ftye -t

Another commonly used notation for L£(f)(s) is F(s). For the integral to
exist f cannot grow faster than an exponcuntial. This motivates the following
definition. We say that f is of exponential order if there exist positive
numbers a and M such that

(2) [f(&)] < Me*" forallt > 0.

For example, the functions 1, 4cos2t, 5tsin2t, 3 are all of exponential
order. We can now give a sufficient condition for the existence of the Laplace
transform.

Suppose that f is piccewise continuous on the interval [0, oo) and of expo-
nential order with [f(0)] < M for all £ > 0. Then £(f)(s) exists for all

8> .

Proof We have to show that for s > a

L(f)(s) - /( " F)e " dt < 0.

)

With AL and a as above, we have

e | o e
/ Flhye '"'(If| / If(@)e " dt < [\[/ et gt
|' v | 0 0

b A
A (s=al gt = :
A ( d 5—(1.<OO m

Note that the function -'—; is not of exponential order. because of its behavior

at t = 0. However, we will show in Example 2 below that its Laplace

transfor L ( 1/;) (s) exists for all s > 0. Thus Theorewn 1 provides sufficient
V

but not necessary conditions for the existence of the Laplace transform.



EXAMPLE 1 L(1), L(t), and L(c"")
We compute these transforms using (1). We have

i 1 1
L(1)(s) = / e Mdt= =" ==, 5$>0
0 S 0 S
E(t)(s)—/mt' “ dt (—te""— = "')x ! s>0
)s) = | ¢ s ek L=
and finally. for s > o,
. . 1 i 1
L(e™)(s) = / emgt = gria=ay
0 S =« 0o S—oa
Note that L£(¢')(s) is not defined for s < a. n

In computing L£(t) we had to integrate by parts once. Similarly, we
could compute L£(t") (n a positive integer) by integrating by parts n times.
Rather than doing this, we shall take advantage of an interesting connection
between the Laplace transform and the gamma function (Section 4.7).

EXAMPLE 2 L(+"): the gamma function

(a) Evaluatc £(t*)(s) when o > ~1 and s > 0.

(b) Derive from (a) the transforms £(t), £(t?), and, more gencrally, £(t"), where
n is a positive integer.

() What is £ (%) ?

Solution (a) From (1) we have

L(r.")(.s)-/ the " dt.
0

To compare with the definition of the gamma function (13), Section 4.7. we make
the change of variables st = T, dt = 1 dT. Then

CUT\" pdT 1 (¥,
‘C(ta)(s) / (—) e_Td_= n] i T IdT
Jo N S s7
=T(a+1)
I'( 1
((t:l_) (from (13), Section 4.7).
s
(b) Using (a),
I'(2) 1
t = SN e
L(t) = =
2 ra) 2
e = D=5
and, nmore generally,
]
E(t") _ F(” "1) n



THEOREM 2
LINEARITY

(¢) Using (a), and (15), Section 4.7,
. l . _]/2 F( l/2) . n
(\/Z) : (t ) 172 V5 |

Operational Properties

We will derive in the rest of this scction properties of the Laplace transform
that will assist us in solving differential equations. We are particularly
interested in those formulas involving a function, its transform, and the
transform of its derivatives. These formulas are similar to the operational
properties of the Fourier transform. Because the Laplace transform is defined
by an integral over the interval [0, 00), some of the formulas will involve the
values of the function and its derivatives at 0.

l[f f and g arc functions and « and  are numbers, then

L(af + Bg) = aL(f) + BL(g).

|
|

The proof is left as an excrcise. You should also think about the domain of
definition of L(af + Jg) in terms of the domains of definition of £(f) and

L(g)

EXAMPLE 3  L(coskt) and L(sinkt)

These transforms can be evaluated directly by using (1). Our derivation will be
based on Euler's identity ¢*** = coskt + isinkt and the linearity of the Laplace
transform. We have

[N
L(coskt) +iLl(sinkt) = / (coskt + isinkt)e *' dt
0

g : £y (92 .
= tls—ik) gy _ g~ tla=ik) 1
¢ et oL

0 s—ik |, 5 — ik

s+ 1k s ok
- {

AR SR SR
Equating real and imaginary parts, we get
L(coskt) = —2—5— and L(sinkt) = —,—A-——
5% + k*? s7 4 k?
For an alternative derivation, see Example 10 below. ]

The next result is very useful. [t states that the Laplace transform takes
derivatives into powers of s.



THEOREM 3
LAPLACE
TRANSFORMS OF
DERIVATIVES

THEOREM 4
DERIVATIVES OF
TRANSFORMS

Proof Since f is of exponential order, then (2) holds for some positive constants
a and AL, The transform £(f")(s) is to be computed for s > a. Before we start the
computation, note that for s > a

. LI T Jiat —~(s—alt < Ml celEeap
']1_}20|f(z‘)| ¢ Ll—lpc\l: [f(t) e e <M ’1_1_1&( 0.
LA et

because s — « *- 0. We now compute. using (1) and integrating by parts,
OG
E(,]U)(Q) = / f/(f.)(_'“'w ot (,5' > (L)
0

= f(t)(,‘!—f"l(")\” . (__g) / f(f.)(‘_:" dt
Jo _
LON)(s)
=~ f(0) + sL(f).

which proves (i). Part (ii) follows by repealed applications of (i). |
When n = 2, (4) gives

(5) L(f") = s*L(f) = sf(0) ~ f(0).

The following is a counterpart of Theorem 3 showing that the Laplace (rans-
form takes powers of t into derivatives.




Proof Differentiation under the integral sign gives

LIHY(s) ‘%]; /) f(t)e *tdt = /n ) d o e

(
ds

B / L) dt = —C( ) (s).

0

and (i) follows upon multiplying both sides by —1. Part (ii) is obtained by repeated
applications of (i). [ |

EXAMPLE 4 Derivatives of transforms
(a) Evaluate L(fsin2t). (b) Evaluate £(#7sint).

Solution (a) Using (6) and Fxample 3, we find

. (l 2 1.\
L(tsin2t) = s [52 + l] N (s24 12

(b) Similarly, using (7) and Example 3. we find

! } 2(-1+3+?)

. d? = :
L(F sint) = [_5.2+1 (24 1)% 7 .

(s?

The following theorem states that multiplication of a function by ¢!
causes the transform to be shifted by ¢ units on the s-axis. This very
important property has a counterpart that involves a shift on the t-axis (see
Theorem 1, Section 8.2).

THEOREM 5 Suppose that f is ()f-.(_'-X_}_.;('mvnl:izll order. Let a be a real number and a be as
SHIFTING ON THE |4, (2). For s > a + a. we have
s-AXIS

L FUN(s) = F(s = ).
L\_\’ll(}l'(‘. F(s) :l'-_L‘.(,/'(I))(x.)_. ot

Proof Note that ¢! f(¢) is also of exponential order and (2) holds with a replaced
by a + a. Thus Theoren 1 guarantees the existence of L(e*! f(t) for s > a + . We
have

L)) = [ Ft)ete ™ de /.m-f(f)< teoldt = F(s—a). .
St

<0 )

By taking f = 1 in Theorem 5, we obtain the third translorm in Example
1, L(e™) = - since £(1) = %

s—a’



The Inverse Laplace Transform

We now reverse the process of computing Laplace transforms and instead, for
a given function F'(s), we look for the function f(t) whose Laplace transform
is F'(s). The function f(t) is called the inverse Laplace transform of
F(s) and is denoted by

f(t) = L YF(s)) orsimply f = LYEF).

It is possible to give a formula for the inverse Laplace transform like the
one we gave for the inverse Fourier transform. The formula involves integra-
tion in the complex plane and is not very useful for our purposes (see (1],
Chapter 12). Instead, we will compute the inverse transform by using known
Laplace transforms, as illustrated by the examples below. We note that the
inverse of any linear transform is itself linear. In particular, we have

LY aF+8G) =al Y(F)+3L7YG).

EXAMPLE 5 Inverse Laplace transforms
(a) Evaluate E_I(Tzl)-;). (b) Evaluate £ =7i5)-
Solution (a) From the table of Laplace transforms in Appendix B (or by using

Example 3 and Theorem 5), we find that

at ol :
L(e" sinkt) Goalh?
Taking a = 1 and k = 2, we get

2
L(c" sin 2¢) CESETS
Hence

E_l(ﬂ(%l_)i) = el sin2t.
(b) Motivated by part (a), we first write

1 1 1 V2

P23 (s 17+ (V22 VE(s+ 12+ (V22

Now using the transform in (a) with a = —1 and k& = /2, we get
1 1 V2 1
L7 ()= — L] = — e 'sin V2t
(32+23+3) V2 ((s+ 1)2+(\/§)2) V2 "
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Rational Functions and Partial Fractions
We just computed in Example 5 the inverse Laplace transforms of two ratio-
nal functions. For more general rational functions, we can use a technique
that is common for computing integrals of such functions. This technique
is based on the fact that any rational function has a partial fractions de-
composition, which expresses the function as a sum of a polynomial plus a
finite number of rational functions of a simpler form. We will not. prove this
fact; instead, we will describe this decomposition, and show by cexamples
how it works.

It is a fact from algebra that any polynomial ¢(x) can be factored as a
product of lincar terms and quadratic polynomials with no real roots:

(8) Q(T) = a(:r al)m' (T ) a?)m}z o (-152 + b]ll' |- (.‘l)“' (11'2 + bz:l,‘ (-2)7?2 -

where we have only finitely many factors, m; and ny arc integers > 1, all
the a,’s are distinct, and all the quadratic factors arc distinct and have
no real roots. (This factorization follows from the fundamental theorem
of algebra that states that every polynomial factors as a product of linear
factors over the complex numbers. If the polynomial has real cocfficients,
its complex roots come in conjugate pairs. Now if a is a complex root with
a nonzero imaginary part, then (z - a){(x —a) = 2% — 2Re(a) + |a|® is a
quadratic polynomial with no recal roots. Thus if we multiply pairwise the
lincar factors that correspond to conjugate rools, we obtain the factorization
(8) where all the coefficients are real.)

Given a rational function p(x)/q(2), where p and ¢ are polynomials with
real coefficients, factor p and ¢ as in (8), and cancel the common factors.
So we may assume that p and ¢ have no common factors. Without loss of
gencrality, assume that the degree of p is strictly smaller than that of ¢;
otherwise, divide p by ¢ and writc the rational function as the sum of a
polynomial plus a rational function in which the degree of the numerator is
strictly smaller than that of the denominator. Using the factorization (3)
of g, you generatc the partial fraction decomposition of p/q as follows. For
each lincar factor (z —a)™ (m > 1) that appears in (8), add the terms

/11 Ay -'117)

(z —a) +(.’t: - a) +”.+(T-.._(,)m'

(9)

o)

where Ay, ..., A, are real numbers to be determined. And for cach quadratic
factor (22 + bz + ¢)” (n > 1) that appears in (8), add the terms

Bia+ (4 Box + Cy o B, +C,
(22 +ba+c) (22 + br +c)? (a2 + b + )’

(10)

where By, ..., B,, C,,...,C, arc real numbers to be determined. The
partial fractions decomposition of p(a)/q(x) is the sum of all the terins of



the form (9) and (10). That is, p(x)/q(x) is the equal to the sum of all these
terms. The coefficients A;, By, and Ci, can be computed by recombining the
partial fractions and compating with the coefficients of p. or by inspection,
as we now illustrate.

EXAMPLE 6 Partial fractions decomposition

Find the partial fractions decompositions of the following rational functions:
() P —

Y1) (r + 1) (2 +1)2(x—1)

Solution (a) The partial fractions decomposition is of the form

1 A]_ AQ B'B+C
1 . = .
(1) (@2 4+ 1)(x+1)2 241 * (z+ 1)2 z2+1

Multiplying both sides by (r + 1)2, then evaluating at 2 = —1, we find % = A,
Multiplying both sides by (r + 1)2, differentiating with respect to x. and then
cvaluating at @ = —1, we find

=0

A

; T+ 1)2 =
dmar:2+1(7 ) =1

-2 _d_B:E+C

N B
(.'172 + ].)2 xr

= Ay
5 ]

= A
1
Substituting Ay and Az by their values in the partial fractions decomposition and
then evaluating at » = 0, we get

1 1
l1=—-+4+ = =0.
2+2+C = C=0

Multiplying both sides of (11) by wr, then letting 7 tend to oo, we find

xr T Bax? 1
0= li ; 4= ] - >4+ B.
e 120z +1) | e wrll 2
Henee B = —% and so
1 1 1 T

P2+ D+ 12 2x+1) ' 20r+1)2 2(3,-2.4 1)’
(b) Write

L A Bia+ ¢y Bax + Cy

(12) (‘7.2 I 1)2(.’1‘ 1) 71 2+ 1 ($2+ 1)2

We multiply by (z — 1) then set © = 1, and get A = 1. Multiplying by (x? + 1)?

aud then setting o = +i (where 2 = —1), we got
4i
i_ylngv'+Cg (for x = 1),
4(—1)

] = By(—i) + Ca (for x = —i).



Solving the equations, we find By = —2 and ('y = 2. Setting « = 0, we find
0=—-A+C+C=Ci=A~-Cy=-1.
Finally, multiplying both sides of (12) by @, then letting x — oc, we find
0-.\+B, = B =-1.

LL ) 1 a + 1 " -2+ 2
(24 1)%(x—-1) w-1 22+1 (224 1) B

We next, compute inverse Laplace transforms using partial fractions.

EXAMPLE 7 Inverse Laplace transform of rational functions
Evaluate £7! (—-n_*_—;;—J)

S

Solution (First Method) As we did in Example 5(b), start by writing

1 . 1 1 2
242 3 (s+1)2-227 2(s4+1)2-22°

From the table of Laplace transforis in Appendix B. we have

al - k
L(e* sinh kt) = Goar

Taking @ = —1 and &k = 2, it follows that

1 1 2 1
M= Jeer ' [ — Ve e sih 2k
(Fres—3) =3 ((s b1)2 -22) g« siuh2

(Second Method) Here we use partial fractions. First factor the denominator as
$2+2s—3 = (5+3)(s - 1). Now write

1 A . B
(s+3G-1) (+3)  (s—-1)

Multiply both sides by (s +3)(s — 1), then

1= A(s—1)+ B(s+3).

Setting s = 1 and then s = —3 yiclds B 1’ and A _1{ respectivelv, Thus
1 1 1 1 1 i 1
L:_l e— :___[:—l - _[:——I o = 3 = I.
) G e T e P LAY

It is easy to see that this transform is also equal to ¢! sinh 2t, matching our earlicr

finding. |

Laplace Transform and Ordinary Differential Equations
The key to solving difterential equations via the Laplace transform method is
to use the operational propertics. particularly those related to differentiation.



We begin with a simple initial value problem. In what follows, we will denote
the Laplace transform of y(¢) by Y (s).

EXAMPLE 8 A second order ordinary differential equation
Solve y" +y =2, y(0)=0, ¥'(0) = 1.

Solution Taking the Laplace transform of both sides of the equation and using
Theorem 3, we find

2Y  sy(0) —y(0)+Y = £(2) = % .

Using the initial conditions, we obtain

1 2
s2+1 s(s2+1)

2
(s2+1)Y -1= = > Y=

Using partial fractions on the second term, we find

) 1 +2 2s
s2+1 s s241°

Finally, taking the inverse Laplace transform, we get y = sint + 2 - 2cost. ]

This example is a typical illustration of the Laplace transform method.
Starting from a lincar ordinary differential equation with constant coeffi-
cients in y, the Laplace transform produces an algebraic equation that can
be solved for Y. The solution y is then found by taking the inverse Laplace
transform of Y. The Laplace transform method is most compatible with ini-
tial value problems where the initial data is given at ¢ = 0, owing to the way
the transform acts on derivatives. If the initial data is given at some other
value tp, the Laplace transform still applies: We simply make the change of
variables 7 = 1 — tg. The next example illustrates this process.

EXAMPLE 9 Shifting the time variable
Solvey” +2y +y =t, (1) =0, /(1) =0.
Solution Making the change of variables 7 = t — 1, we arrive at the initial valuc
problem

y'+2 +y=7+1, y(0)=0, y'(0)=0,
where now a prime denotes differentiation with respect to 7. From this point, we
proceed as in Example 7. Transforming yields

1 1 1
2 < -
s°Y + 2s8r + 31+.s 25+ 1)
L sing partial fractions, we get
_ 11
Cs4+1 s s?
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L T-Exercises

i ! 4 show that the given function is of crponential order by establishing
(2) with an appropriate choice of the numbcrs a and M. LT2
f(t) = 11 cos 3t. S

f() = sinh3t{LT3
QE. evaluate the Laplace transform of the giuen function using ap-
propriate theorems and examples from this section .

l_.T‘i ) =2t +3

— xsl. so=virg

7 f(t) = t2et.
B! f(t) = t sindt.

'* evaluate the wmwerse Laplace transform. of the given function.
1 .
[LT g ‘ F(s)= .
.

i

%
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Ta————

Tl
G
coe)
i)

>/k solve the given initial value problem with the Laplace transform.

Yy +y=cos2t, y(0)=-2.
Yy +y=cost, y(r)=0, y'(x)=0.
v +2y +y=te®, y0)=1, y(0) = 1.

Yy’ —y —6y =c'cost, wy0)=0, y(0)=1.

~



