Solutions for Chapter 13

Section 13.2

Use the power-series method to solve:

1. y-3x2y=0
By equation (13.2), we express the solution as the power series

oL
m ) 3
y=Za”,x =qy+ X+ X" + a3 x4
m=0

axL
=1 2
Then V=Y ma,x"" =a,+2a,x+3ax* + -
m=1

m+2

a
=a +2a,x+ Z (m+3)a,,. ;x
m=0

Also 3%y = 3a, x™? =30, x* +3a, x* +3a, x* +---

m=0

Therefore ' —3x7y =g, + 2a,x+ Z [(m +3)a,,.; —3a, ]x"”z

m=0

=0 when the coefficient of each power of x is zero.
Then a=a,=0
and (m+3)a,,;—3a, =0 for m=0,12,..

= 3a,-3a,=0 — ay=a, (a, arbitrary)

4a,-3a,=0 — a,=0

Sa;-3a, =0 — a;=0
b6a, -3a,=0 — a6=5a3=2—!a0
Ta; =3a, =0 — a; =0
8a;-3a;=0 — az3=0
1 1

9a,-3a, =0 — a,=-—-a. =—a,

9 6 9 3 6 3' (]
and so on.

Therefore  a;,., =ay,., =0

asp, =L|ao for n=0,12,...
n!
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and the power series expansion is

oo 3 1 6 1 9 - - 1 KRV
y—ao[l+x +§x +ix + —aonzz(:]m(x )

3
We recognise the sum as the power-series expansion of the function e* . Therefore

v\'3
y=ame

where g, is an arbitrary constant.

2. (1-x)y'—y=0. Confirm the solution can be expressed as y = a/(1-x) when |x|<1.

ac

Let Y= a, X" =ay+ax+axt +ax’ +--
m=0
*
¥'=) ma,x"" =a +2a,x+ 3a,x0 + o
m=1
ac an
Then (1-x)y'= Y ma,x"" =% ma,x"

m=| m=1
=a, +(2a, —a))x+(3a, —2a,)x" + ---

ax
m
=a + Z [(m +Da,,., —mam]x
m=1

Therefore  (I-x)y'—y=a,—a, + i I:(m +Da,,,, —mam]x”' - i a,x"
m=1 m=1

o
m
=a,-aq; + z (m+1)a,., —a,)x
m=1

=0 when a,,,, =a,, forall values of m.

m+

All the coefficients are therefore equal, to arbitrary a, say, and the power series expansion is

a
y= a[) z xm

m=0

. : : : : . ag
and this is recognized as the geometric series expansion of s convergent when | x| <1.
=00
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3. y"-9y=0. Confirm that the solution can be expressed as y = ae’* +be ™" .

Let y= z I
m=0
Then y'= z m(m—1)a,, x" = Z (m+2)(m+Da,, , x"
m=2 m=0
and Y'=9y=> (m+2)(m+Da,.,x" - 9a, x"
m=0 m=0

=0 when (m+2)(m+1)a,., =%,

The recurrence relation for the coefficients gives rise to two independent series:

(i) meven m=0 — 2a,=9a, - a2=§a0

2

—ay,

m=2 - 3x4a,=9%9a, — a4=4I

93
m=4 — 5xb6a,=9%, — a6=aa0 and so on

Therefore, for even powers of x,

2 4 6
y(x)=a, |+(3x) +(3x) +(3x) +}

21 4! 6!

(iiy modd m=1 - 2x3a;=9;, — a :aa]
m=3 — 4x5a;=9; — 0525——'01
?
m=35 - 6x7a; =95 — asz?al and so on

Therefore, for odd powers of x,

_a (3x)  (3x)°  (3x)
yz(x)—?[(3x)+ TR T TR

We recognize y, and y, as the hyperbolic functions

Y (x)=a,cosh3x = a?O[el‘ T } Yo(x)= %sinh 3x= %'l:eh —e’h:l

Therefore  p(x) = y(x)+ ¥, (x) = a, cosh 3x + (a; /3) sinh 3x

=ae’™ +be" where ay =a+b, a/3=a-b
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4, (- ¥’ )y"=2xy"+2y =0 (The Legendre equation (13.13) for /=1).

y ; 1-2
Show that the solution can be written as y = ax+ a, [1 + % In [I——VH when | x| <1.
+x

x = -

Let y= Z a,x", y'= Z mamxm'l, y'= Z mim— l)aerm’2
m=0 m=1 m=2

Then (-x")y"-2x'+2y

@ . i .
-2
=Y mm-Da,x" =3 mm-Da,x" -23 ma,x" +23 a, x"
2 m=1 m=0

m=2 m=2

x « = =
= Z (m+2)m+ Da, ,x" - Z m(m—1a,x" —ZZmamx"’ + 22 a, x"

m=0 m=0 m=0 m=0

= 3 (m+2)| (m+a,,,,—(m-a, [x"
m+2 m

m=0

and (1-x?)y"=2x"+2y=0 when Oy = [m—_]]am
m+1

The recurrence relation for the coefficients gives rise to two independent series:

) a a 3a, a . ;
(i) meven: a,=-a,, a,=—2=-—_ g =—F=_"Y ... witha, arbitrary
2 o Ay =3 30 %7 o
a,
- a,=-—" for n=2,4,6,...
=

(ii) modd:  « arbitrary,

a3 =0,a;,=0 — a,=0 for odd n>1
4 6 8
Therefore  y(x)= ui.\:+an|:l —x? _%_%7:7 ]

Now

X 1-x x
l+?ln[l+x]:l+5[ln{l—x)=1n[l+x)]

Therefore y=ax+a, 1+X1n L] when | x| <1
2 I+x
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5. »"—xy=0 (Airy equation).

Let Fi= Z ay, sl Xy = Z ap, -
m=0 m=0
Then Y= mm=Na, x"* =2a,+ Y (m+3)(m+2)a,.; x""
m=2 m=0
ks ax
and Yi-xy=2a,+ . (m+3)(m+2)a,.; 3" - a, "
m=0 m=0

=2a, + i [(m +3)(m+2a,,.;-a, ]x’””
m=0
1

=0 when a, =0 and ¢ —a,,
(m+3)(m+2)

m+3

The recurrence relation for the coefficients gives rise to three independent series:

s a, —la n ay ~ﬂa = a _lx4x7a

TR T e A T T T T
a 2 a;  2x5 ag 2x5x8

ay = =—a., a;= = ay,  dp= = 5
3Ix4 4! 6x7 7! 9% 10 9!
a

524_:5_ =ay=a, =

Therefore
y(x)=a, l+i.r3+ux6+l'4'7x9+--- +a x+lx4+£x7 +ﬂxm+

3! 6! 9! 4! 7! 10!

Section 13.3

For each of the following, find and solve the indicial equation

[
op‘ﬂb [ 7. 9%
B
poy"+3xy'+y=0
We have by=3, ¢, =1
and the indicial equation is
P +(by—Dr+c,=0 — P24 2r+1=(r+1)* =0 when r=-1

Therefore 1y =r, =—1 (double root)
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Opr ] V@fﬁ

"+ + (x> —n?)y = 0 (Bessel equation)
We have by =1, ¢y =—-n"
and the indicial equation is

iv‘2+(bnml)r+c0 =0 = rP—n*=(r—n)(r+n)=0 when r=+n

8 x"+(I-2x)y"+(x=1)y=0
We write the equation as x°)" + (x—2x° )y (37 =x)y=0
Therefore by =1, g =0 — r’=0
Therefore 1 =r,=0
9. X%y +6xy +(6-x")y=0
Wehave by =6, co=6 — r’+5r+6=(r+2)(r+3)=0
Therefore 1 =-2, r, =-3
10. (i) Find the general solution of the Euler-Cauchy equation Xy boxy'+cyy =0 for distinct

indicial roots, 1 # r,. (ii) Show that for a double initial root r, the general solution is

y=(a+blnx)x".

Let Y(x) = X" (ag + ayx + ayx* + ayx’ +--)=x" "
m=0

Then, by equation (13.7)

Z [(r +m) + (by =D)(r + m)+¢, ]amxmﬂ =0

m=0

The equation is satisfied if., for every power of x, either a,, =0 or the term in square brackets is

zero. For m =0, the latter is the indicial equation (13.8), so that a particular solution of the

differential equation is

y=x", where r is an indicial root. There are two possible types of solution.

(i) Distinct indicial roots, 5 # r,. Then by equations (13.10), x" and x are two independent

particular solutions, and the general solution of the Euler-Cauchy equation is

Y(x)=ax" +bx"
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