Solutions for Chapter 14
Section 14.2
1. Show that the function f(x,¢)=a sin(bx) cos(vbht) (i) satisfies the 1-dimensional wave equation
(14.1), (ii) has the form f(x,t)=F(x+vt)+G(x—uvt) .
(i) We have f(x,t)=asin(bx) cos(vbt)
Then f = ba cos(bx) cos(vbt), fi-{ =-b%asin (bx) cos(vht) = —bzf
oxX
,, 2
g- = vba sin (bx) sin (vht), —{- =—v*hasin (bx) sin (vht) = —vzbzf
2
2 2
Therefore g { =_L26 {
ox v© Ot°
(ii) We have sin AcosB2%[5in(A+B)+sin(A—B):|
Therefore  f(x,t) = a sin(bx) cos(vht) = %[sin(bx +wbt) +sin(bx — -ubt)]
oy iy Ll
2. The diffusion equation oy =D 2 provides a model of, for example, the transfer of heat from a
C X
hot region of a system to a cold region by conduction when f(x.¢) is a temperature field, or the
transfer of matter from a region of high concentration to one of low concentration when fis the
concentration. Find the functions ¥ (x) for which f(x, )=V (x)e is a solution of the equation.
i ~ ) ~2 dZIr ‘
We have L) =V(x)e”, ag. V(x)e”, L e
f(x, )=V (x)e ey clV(x)e =3 ja e
% ~2 20
Then 1=D0 . - cV(x)e” =D l—, e
ot 6_\'2 =
4 e
& D

The type solution depends on the value of ¢/D:

dzf" :

(a) ¢/D=0 —3=0 — V=a+bx

(b) ¢/D=A*>0 ¢/D=2>0 — V=ae* +be™**
(c) ¢/D=2*>0 V=acosAx+bsinix
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Solutions for Chapter 14 3

3. (i) It is shown in Example 14.2 that the function f(x,t)=aexp[-b(x— w)z] is a solution of the
wave equation (14.1). Sketch graphs of f(x, ) as a function of x at times =0, t=2/v, t =4fv

(use, for example, @ =b=1) to demonstrate that the function represents a wave travelling to the

right (in the positive x—direction) at constant speed v .
(ii) Verify that g(x,t)=a exp [-b(x+ ut)z] is also a solution of the wave equation, and hence
that every superposition F(x,t)= f(x,t)+g(x,t) isasolution. (iii) Sketch appropriate graphs of

f(x.t)+ g(x.t) to demonstrate how this function develops in time.

(i) The function f(x,t)=aexp[-b(x—- vr)z] represents a Gaussian wave whose centre lies at
x=wt. The centre moves to the right (the positive x-direction) with constant speed
dx/dt = v . Figure | shows the wave at times r=0, t=2/v, r=4/v.

Fla,t)

Figure 1 al l |'
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(i) Function g(x,t) is obtained from f(x.t) by replacement if v by —v, and has the same

second derivative with respect to time ¢, proportional to v?, asin Example 14.2. Thus

ot (~u)? &t oot
2 2 ~2 2 2 2
F 0 b3 0 b 0o

Then “—=—(af +bg)=a— {+b—§'—% {+ﬁ5 g
ox°  ox Ox Ox V.o vt Of

I @ 1 0°F

R TRl

v? ar? £ T

(i) In Figure 2, the component fof F = f+ g moves to the right with constant speed v, the
component g to the left with the same speed; that is, the components separate as ¢ increases.
The amplitude of the total wave at r =0 is twice that of the components, but decrease with ¢ to

that of the separate components.
F(z,t)

2|
Figure 2
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Solutions for Chapter 14

Section 14.3

Find solutions of the following equations by the method of separation of variables:

4. i+i:0
ox ot
Let S(x. )= F(x)xG(t)
Then @'" dF(Y) G(f) af F() dG(!)
ox dt
and 2954 oy, 2 F D i )dG(t) 0
ox Ot dx

Division throughout by f = F(x)xG(y) gives

2 dFw], [ 1 d6o]_
F(x) dv | [G@) dt

The two sets of terms in square brackets must be separately constant if x and ¢ are independent

variables. Therefore, if the first set of terms equals the constant C then the second set is equal to

—C (for the total to be zero). The resulting ordinary first-order equation in variable x is

[LdF(x)]=C L F@_Cro
dx ’

F(x) dx 2

with general solution F(x)= ae™?  The corresponding equation in variable ¢ is

[de“)}:-c_; G0 _ _ g
dt

G(r) dt
with general solution G(¢)= be . A complete solution is therefore

F(x0)= F(x)xG(1)

Cx/2 C(x/2-1)

=ae xbe " = abe

o AeB(.r—ZJ]

where 4 and B are arbitrary constants.
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Solutions for Chapter 14

B A
ax oy
of dF of dG
Let x, ¥)=F(x)xG - —=—xG, —=Fx—
S(x, ¥) = F(x)xG(y) R &
Then yg—xi=0 - yd—FG—xF£=0
ox ot dx dy

1 dF 1 dG
- | ——|-|——1|=0
xF dx vG dy

Putting each set of terms equal to constant C, we have (see Section 11.3)

£=CxF - £= -[de — lnF=C£+C
dx F 2
> F=q"P

Simi!a[‘]y, d—g = CyG - G= be(‘j‘l,"‘z
dy

Therefore  f(x.y)= abel 7+ 2 AeB(X2+J‘1]

A2 2
6. (i{+a—£=0
ox
f dp 2’ f d*G

Let (x. »)=F(x)xG(y) =» —5= xG, ——=Fx——
e g x*  ax® 5 dy*
2 2 2 2 2 2

Then 6{+6{:0 — dfoJrFx—d?:O — l_df+l_d(:;?:0
A dx dy” F dx G dy
2 2

and g:afi i—(23—=—CG
dx dy

As in Exercise 2, there are three possible types of solutions:

F(x)=a+b
@ C=0: { PUSEEER L G A
G(y)=c+dy
: F(x)=ae™ + be™™ Ax -A :
by C=4">0: = f(x,y)=(ae™ +be”")ccos Ay+dsinly)
G(y)=ccosAdy+dsinly
© C 42 s F(x)=acosAx+bsin Ax 1G5y = s BeinA i d"h')
c =1"<0: —  f(x,y)=(acosAx+bsin Ax)(ce™ +de
G(y)=ce™ +de™™ .
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2

of
718 + /=0
Oxdy s
2
We have flx. ) =F(x)xG(y) — 6—{—=£x§
oxoy dx dy
Then ﬂ+ =£x£+FG=0 when L g 140 +1=0
oxady dx dy F dx |G dy
and dE, SR = F =ae™, @ g e
dx dy C
Therefore  f(x, y) = Ae'™/©)

Show that the wave functions (1

J: [ratrw,

x, ) dxdy ={

"23) satisfy the orthonormality conditions

| ifp=randg=s
0 otherwise

pux
a

We have

G 2 H
pg = ; sin

o -[ ,[ Wp,q(x’y)wr,s(x’y}dXdy

2 fsin [—pnx]sin [E)
a a a

sin Axsin

Remember

dxx—

2

and similarly for /, .
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