Section 14.2

- Show that the function $f(x,t) = a \sin(bx) \cos(vbt)$ (i) satisfies the 1-dimensional wave equation (14.1), (ii) has the form f(x,t) = F(x+vt) + G(x-vt).
 - (i) We have $f(x, t) = a \sin(bx) \cos(vbt)$

Then
$$\frac{\partial f}{\partial x} = ba \cos(bx) \cos(vbt), \quad \frac{\partial^2 f}{\partial x^2} = -b^2 a \sin(bx) \cos(vbt) = -b^2 f$$
$$\frac{\partial f}{\partial t} = vba \sin(bx) \sin(vbt), \quad \frac{\partial^2 f}{\partial t^2} = -v^2 b^2 a \sin(bx) \sin(vbt) = -v^2 b^2 f$$

Therefore
$$\frac{\partial^2 f}{\partial x^2} = -\frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$$

(ii) We have $\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$

Therefore $f(x,t) = a \sin(bx) \cos(vbt) = \frac{a}{2} \left[\sin(bx + vbt) + \sin(bx - vbt) \right]$

2. The diffusion equation $\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial x^2}$ provides a model of, for example, the transfer of heat from a hot region of a system to a cold region by conduction when f(x,t) is a temperature field, or the transfer of matter from a region of high concentration to one of low concentration when f is the concentration. Find the functions V(x) for which $f(x,t) = V(x)e^{ct}$ is a solution of the equation.

We have
$$f(x,t) = V(x)e^{ct}$$
, $\frac{\partial f}{\partial t} = cV(x)e^{ct}$, $\frac{\partial^2 f}{\partial x^2} = \frac{d^2V}{dx^2}e^{ct}$

Then
$$\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial x^2} \rightarrow cV(x)e^{ct} = D \frac{d^2V}{dx^2} e^{ct}$$

$$\rightarrow \frac{d^2V}{dx^2} = \frac{c}{D}V$$

The type solution depends on the value of c/D:

(a)
$$c/D = 0$$

$$\frac{d^2V}{dx^2} = 0 \rightarrow V = a + bx$$

(b)
$$c/D = \lambda^2 > 0$$
 $c/D = \lambda > 0$ $\rightarrow V = ae^{\lambda x} + be^{-\lambda x}$

(c)
$$c/D = \lambda^2 > 0$$
 $V = a \cos \lambda x + b \sin \lambda x$

- 3. (i) It is shown in Example 14.2 that the function $f(x, t) = a \exp[-b(x vt)^2]$ is a solution of the wave equation (14.1). Sketch graphs of f(x, t) as a function of x at times t = 0, t = 2/v, t = 4/v (use, for example, a = b = 1) to demonstrate that the function represents a wave travelling to the right (in the positive x-direction) at constant speed v.
 - (ii) Verify that $g(x, t) = a \exp[-b(x + vt)^2]$ is also a solution of the wave equation, and hence that every superposition F(x,t) = f(x,t) + g(x,t) is a solution. (iii) Sketch appropriate graphs of f(x,t) + g(x,t) to demonstrate how this function develops in time.
 - (i) The function $f(x, t) = a \exp[-b(x vt)^2]$ represents a Gaussian wave whose centre lies at x = vt. The centre moves to the right (the positive x-direction) with constant speed dx/dt = v. Figure 1 shows the wave at times t = 0, t = 2/v, t = 4/v.

(ii) Function g(x,t) is obtained from f(x,t) by replacement if v by -v, and has the same second derivative with respect to time t, proportional to v^2 , as in Example 14.2. Thus

$$\frac{\partial^2 g}{\partial x^2} = \frac{1}{(-v)^2} \frac{\partial^2 g}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 g}{\partial t^2}$$

Then
$$\frac{\partial^2 F}{\partial x^2} = \frac{\partial^2}{\partial x^2} (af + bg) = a \frac{\partial^2 f}{\partial x^2} + b \frac{\partial^2 g}{\partial x^2} = \frac{a}{v^2} \frac{\partial^2 f}{\partial t^2} + \frac{b}{v^2} \frac{\partial^2 g}{\partial t^2}$$
$$= \frac{1}{v^2} \frac{\partial^2}{\partial t^2} (af + bg) = \frac{1}{v^2} \frac{\partial^2 F}{\partial t^2}$$

(iii) In Figure 2, the component f of F = f + g moves to the right with constant speed v, the component g to the left with the same speed; that is, the components separate as t increases. The amplitude of the total wave at t = 0 is twice that of the components, but decrease with t to that of the separate components.

Section 14.3

Find solutions of the following equations by the method of separation of variables:

4.
$$2\frac{\partial f}{\partial x} + \frac{\partial f}{\partial t} = 0$$

Let
$$f(x,t) = F(x) \times G(t)$$

Then
$$\frac{\partial f}{\partial x} = \frac{dF(x)}{dx} \times G(t), \quad \frac{\partial f}{\partial t} = F(x) \times \frac{dG(t)}{dt}$$

and
$$2\frac{\partial f}{\partial x} + \frac{\partial f}{\partial t} = 0 \rightarrow 2\frac{dF(x)}{dx}G(t) + F(x)\frac{dG(t)}{dt} = 0$$

Division throughout by $f = F(x) \times G(y)$ gives

$$\left[\frac{2}{F(x)}\frac{dF(x)}{dx}\right] + \left[\frac{1}{G(t)}\frac{dG(t)}{dt}\right] = 0$$

The two sets of terms in square brackets must be separately constant if x and t are independent variables. Therefore, if the first set of terms equals the constant C then the second set is equal to -C (for the total to be zero). The resulting ordinary first-order equation in variable x is

$$\left[\frac{2}{F(x)}\frac{dF(x)}{dx}\right] = C \quad \to \quad \frac{dF(x)}{dx} = \frac{C}{2}F(x)$$

with general solution $F(x) = ae^{Cx/2}$. The corresponding equation in variable t is

$$\left[\frac{1}{G(t)}\frac{dG(t)}{dt}\right] = -C \rightarrow \frac{dG(t)}{dt} = -CG(t)$$

with general solution $G(t) = be^{-Ct}$. A complete solution is therefore

$$f(x,t) = F(x) \times G(t)$$

$$= ae^{Cx/2} \times be^{-Ct} = abe^{C(x/2-t)}$$

$$= Ae^{B(x-2t)}$$

where A and B are arbitrary constants.

$$5. \quad y\frac{\partial f}{\partial x} - x\frac{\partial f}{\partial y} = 0$$

Let
$$f(x, y) = F(x) \times G(y) \rightarrow \frac{\partial f}{\partial x} = \frac{dF}{dx} \times G, \quad \frac{\partial f}{\partial y} = F \times \frac{dG}{dy}$$

Then
$$y \frac{\partial f}{\partial x} - x \frac{\partial f}{\partial t} = 0 \rightarrow y \frac{dF}{dx} G - xF \frac{dG}{dy} = 0$$

 $\rightarrow \left[\frac{1}{xF} \frac{dF}{dx} \right] - \left[\frac{1}{yG} \frac{dG}{dy} \right] = 0$

Putting each set of terms equal to constant C, we have (see Section 11.3)

$$\frac{dF}{dx} = CxF \rightarrow \int \frac{dF}{F} = C \int x \, dx \rightarrow \ln F = C \frac{x^2}{2} + c$$

$$\rightarrow F = ae^{Cx^2/2}$$

Similarly,
$$\frac{dg}{dy} = CyG \rightarrow G = be^{Cy^2/2}$$

Therefore
$$f(x, y) = abe^{C(x^2+y^2)/2} = Ae^{B(x^2+y^2)}$$

$$6. \quad \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

Let
$$f(x, y) = F(x) \times G(y) \rightarrow \frac{\partial^2 f}{\partial x^2} = \frac{d^2 F}{dx^2} \times G, \quad \frac{\partial^2 f}{\partial y^2} = F \times \frac{d^2 G}{dy^2}$$

Then
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0 \quad \rightarrow \quad \frac{d^2 F}{dx^2} \times G + F \times \frac{d^2 G}{dy^2} = 0 \quad \rightarrow \quad \left[\frac{1}{F} \frac{d^2 F}{dx^2} \right] + \left[\frac{1}{G} \frac{d^2 G}{dy^2} \right] = 0$$

and
$$\frac{d^2F}{dx^2} = CF$$
, $\frac{d^2G}{dy^2} = -CG$

As in Exercise 2, there are three possible types of solutions:

(a)
$$C = 0$$
:
$$\begin{cases} F(x) = a + bx \\ G(y) = c + dy \end{cases} \rightarrow f(x, y) = (a + bx)(c + dy)$$

(b)
$$C = \lambda^2 > 0$$
:
$$\begin{cases} F(x) = ae^{\lambda x} + be^{-\lambda x} \\ G(y) = c\cos\lambda y + d\sin\lambda y \end{cases} \rightarrow f(x, y) = (ae^{\lambda x} + be^{-\lambda x})(c\cos\lambda y + d\sin\lambda y)$$

(c)
$$C = \lambda^2 < 0$$
:
$$\begin{cases} F(x) = a\cos\lambda x + b\sin\lambda x \\ G(y) = ce^{\lambda y} + de^{-\lambda y} \end{cases} \rightarrow f(x, y) = (a\cos\lambda x + b\sin\lambda x)(ce^{\lambda y} + de^{-\lambda y})$$

$$7. \quad \frac{\partial^2 f}{\partial x \partial y} + f = 0$$

We have
$$f(x, y) = F(x) \times G(y) \rightarrow \frac{\partial^2 f}{\partial x \partial y} = \frac{dF}{dx} \times \frac{dG}{dy}$$

Then
$$\frac{\partial^2 f}{\partial x \partial y} + f = \frac{dF}{dx} \times \frac{dG}{dy} + FG = 0 \text{ when } \left[\frac{1}{F} \frac{dF}{dx} \right] \left[\frac{1}{G} \frac{dG}{dy} \right] + 1 = 0$$

and
$$\frac{dF}{dx} = CF \rightarrow F = ae^{Cx}, \qquad \frac{dG}{dy} = -\frac{1}{C}G \rightarrow G = be^{-y/C}$$

Therefore $f(x, y) = Ae^{(Cx-y/C)}$

Section 14.4

8. Show that the wave functions (14.23) satisfy the orthonormality conditions

$$\int_0^b \int_0^a \psi_{p,q}(x,y)\psi_{r,s}(x,y) dx dy = \begin{cases} 1 & \text{if } p = r \text{ and } q = s \\ 0 & \text{otherwise} \end{cases}$$

We have
$$\psi_{p,q} = \sqrt{\frac{2}{a}} \sin\left(\frac{p\pi x}{a}\right) \times \sqrt{\frac{2}{b}} \sin\left(\frac{q\pi y}{b}\right), \quad \psi_{r,s} = \sqrt{\frac{2}{a}} \sin\left(\frac{r\pi x}{a}\right) \times \sqrt{\frac{2}{b}} \sin\left(\frac{s\pi y}{b}\right)$$

Then
$$I = \int_0^b \int_0^a \psi_{p,q}(x,y)\psi_{r,s}(x,y) dx dy$$
$$= \frac{2}{a} \int_0^a \sin\left(\frac{p\pi x}{a}\right) \sin\left(\frac{r\pi x}{a}\right) dx \times \frac{2}{b} \int_0^b \sin\left(\frac{q\pi y}{b}\right) \sin\left(\frac{s\pi y}{b}\right) dy = I_{p,r} \times I_{q,s}$$

Remember $\sin Ax \sin Bx = \frac{1}{2} \left[\cos(A - B)x - \cos(A + B) \right] x$

Then, if $A = p\pi/a$, $B = r\pi/a$, where p and r are integers,

$$I_{p,r} = \frac{2}{a} \int_0^a \sin\left(\frac{p\pi x}{a}\right) \sin\left(\frac{r\pi x}{a}\right) dx = \begin{cases} \left[\frac{\sin(p-q)\pi}{(p-q)\pi} \cdot \frac{\sin(p+q)\pi}{(p+q)\pi}\right] = 0 & \text{if } p \neq r \\ \frac{2}{a} \int_0^a \sin^2\left(\frac{p\pi x}{a}\right) dx = \left[1 - \frac{\sin 2p\pi}{2p\pi}\right] = 1 & \text{if } p = r \end{cases}$$

and similarly for $I_{q,s}$.