Section 12.2

Show that e^{-2x} and $e^{2x/3}$ are particular solutions of the differential equation 3y'' + 4y' - 4y = 0.

We have
$$y = e^{-2x} \rightarrow y' = \frac{dy}{dx} = -2e^{-2x} = -2y \rightarrow y'' = \frac{d^2y}{dx^2} = 4e^{-2x} = 4y$$

Therefore
$$3y'' + 4y' - 4y = [12 - 8 - 4]y = 0$$

Similarly
$$y = e^{2x/3} \rightarrow y' = \frac{2}{3}e^{2x/3} = \frac{2}{3}y \rightarrow y'' = \frac{4}{9}e^{2x/3} = \frac{4}{9}y$$

and
$$3y'' + 4y' - 4y = \left[\frac{4}{3} + \frac{8}{3} - 4\right]y = 0$$

2. Show that e^{3x} and xe^{3x} are particular solutions of the differential equation y'' - 6y' + 9y = 0.

$$y = e^{3x} \rightarrow y' = \frac{dy}{dx} = 3e^{3x} = 3y \rightarrow y'' = \frac{d^2y}{dx^2} = 9e^{3x} = 9y$$

Therefore
$$y'' - 6y' + 9y = [9 - 18 + 9]y = 0$$

$$y = xe^{3x} \rightarrow y' = e^{3x} + 3xe^{3x} \rightarrow y'' = 6e^{3x} + 9xe^{3x}$$

Therefore
$$y'' - 6y' + 9y = 0 = [6 + 9x - 6 - 18x + 9x]e^{3x} = 0$$

3. Show that $\cos 2x$ and $\sin 2x$ are particular solutions of the differential equation y'' + 4y = 0.

$$y = \cos 2x \rightarrow y' = -2\sin 2x \rightarrow y'' = -4\cos 2x = -4y$$

$$y'' + 4y = 0 = [-4 + 4]y = 0$$

and
$$y = \sin 2x \rightarrow y' = 2\cos 2x \rightarrow y'' = -4\sin 2x = -4y$$

$$y'' + 4y = 0 = [-4 + 4]y = 0$$

Write down the general solution of the differential equation in

4. Exercise 1: $y = ae^{-2x} + be^{2x/3}$

5. Exercise 2: $y = ae^{3x} + bxe^{3x} = (a + bx)e^{3x}$

6. Exercise 3: $y = a \cos 2x + b \sin 2x$

Section 12.3

Find the general solutions of the differential equations:

7.
$$y'' - y' - 6y = 0$$

The characteristic equation of the differential equation is

$$\lambda^{2} - \lambda - 6 = (\lambda - 3)(\lambda + 2)$$
$$= 0 \text{ when } \lambda = 3 \text{ and } \lambda = -2$$

Two particular solutions of the differential equation are therefore

$$y_1 = e^{3x}, \qquad y_2 = e^{-2x}$$

and, because these functions are linearly independent, the general solution is

$$y = c_1 y_1 + c_2 y_2 = c_1 e^{3x} + c_2 e^{-2x}$$

8.
$$2y'' - 8y' + 3y = 0$$

The characteristic equation is

$$2\lambda^2 - 8\lambda + 3 = 0$$
 when $\lambda = \frac{8 \pm \sqrt{64 - 24}}{4} = 2 \pm 2\sqrt{5}$

The general solution of the differential equation is therefore

$$y = c_1 e^{(2+2\sqrt{5})x} + c_2 e^{(2-2\sqrt{5})x} = e^{2x} \left[c_1 e^{2\sqrt{5}x} + c_2 e^{-2\sqrt{5}x} \right]$$

$$9. \quad y'' - 8y' + 16y = 0$$

The characteristic equation

$$\lambda^2 - 8\lambda + 16 = (\lambda - 4)^2 = 0$$

has the double root $\lambda = 4$. Two particular solutions are therefore e^{4x} and xe^{4x} , and the general solution is

$$y(x) = (c_1 + c_2 x)e^{4x}$$

10.
$$4y'' + 12y + 9y = 0$$

The characteristic equation

$$4\lambda^2 + 12\lambda + 9 = (2\lambda + 3)^2$$
$$= 0 \text{ when } x = -3/2 \text{ (double root)}$$

The general solution of the differential equation is therefore

$$y(x) = (c_1 + c_2 x)e^{-3x/2}$$

11.
$$y'' + 4y' + 5y = 0$$

The characteristic equation is

$$\lambda^2 + 4\lambda + 5 = 0$$

with roots
$$\lambda = \frac{1}{2} \left(-4 \pm \sqrt{16 - 20} \right) = -2 \pm i$$

The two particular solutions,

$$y_1(x) = e^{(-2+i)x}$$
 and $y_2(x) = e^{(-2-i)x}$

are linearly independent, and the general solution is

$$y(x) = c_1 e^{(-2+i)x} + c_2 e^{(-2-i)x}$$
$$= e^{-2x} (c_1 e^{ix} + c_2 e^{-ix})$$

The equivalent trigonometric form is

$$y(x) = e^{-2x} (a\cos x + b\sin x)$$

12.
$$y'' + 3y' + 5y = 0$$

The characteristic equation

$$\lambda^2 + 3\lambda + 5 = 0$$

has complex roots

$$\lambda = \frac{1}{2} \left(-3 \pm \sqrt{9 - 20} \right) = -\frac{3}{2} \pm \frac{\sqrt{11}}{2} i$$

Then
$$y(x) = e^{-3x/2} \left[ae^{i\sqrt{11}x/2} + be^{-i\sqrt{11}x/2} \right]$$

= $e^{-3x/2} \left[A\cos\sqrt{11}x/2 + B\sin\sqrt{11}x/2 \right]$

20.
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0$$
; $y(0) = 2$, $y \to 0$ as $x \to \infty$

As in Exercise 13, the general solution is

$$y(x) = ae^x + be^{-2x}$$

The first boundary condition gives

$$y(0) = 2 = a + b$$

The second condition requires that the solution go to zero as x goes to infinity. The function e^{-2x} has this property but the function e^x must be excluded. The condition therefore requires that we set a = 0.

Then b = 2 and the solution of the boundary value problem is

$$y(x) = 2e^{-2x}$$

21. Solve
$$\frac{d^2\theta}{dt^2} + a^2\theta = 0$$
 subject to the condition $\theta(t + 2\pi\tau) = \theta(t)$.

The general solution of the differential equation is

$$\theta(t) = Ae^{iat} + Be^{-iat}$$
.

Application of the cyclic boundary condition gives

$$\theta(t+2\pi\tau) = Ae^{ia(t+2\pi\tau)} + Be^{-ia(t+2\pi\tau)}$$

$$= Ae^{iat} \times e^{i2\pi a\tau} + Be^{-iat} \times e^{-i2\pi a\tau}$$

$$= \theta(t) \text{ when } e^{\pm i2\pi a\tau} = 1$$

and the condition is satisfied when $2\pi a\tau = 2\pi n$ for integer n. Therefore, $a = n/\tau$ and

$$\theta(t) = Ae^{int/\tau} + Be^{-int/\tau}, \quad n = 0, \pm 1, \pm 2, \cdots$$

$$\frac{dy}{dx} = 2x$$

$$(=)$$
 $y = x^2 + c$

$$\frac{dy}{dt} = \frac{e^t}{4y}$$

$$\frac{dy}{dx} = \sqrt{\frac{x}{y}}$$

(=)
$$\frac{2}{3}y^{\frac{3}{2}} = \frac{2}{3}x^{\frac{3}{2}} + c$$

(=)
$$y = \sqrt[3]{(x^{3/2} + c)^2}$$

(a)
$$\frac{1}{2}y^{2} = e^{x} + c$$

(b) $y = \pm \sqrt{2}e^{x} + c$
 $y = \pm \sqrt{2}e^{x} + c$
 $y = \pm \sqrt{2}e^{x} + c$
(c) $y = \pm \sqrt{2}e^{x} + c$
(d) $y = \sqrt{2}e^{x} + c$
(e) $y = \sqrt{2}e^{x} + c$
(f) $y = \sqrt{2}e^{x} + c$
(g) $y = \sqrt{2}e^{x} + c$
(h) $y = \sqrt{2}e^{x} + c$

(29)
$$\times (y+y) + y' = 0$$
 en $y(0) = -5$
(=) $\frac{dy}{dx} = -x(y+y)$
(=) $\int \frac{dy}{y+y} = \int -x dx$
(=) $\ln(y+y) = -\frac{1}{2}x^2 + C$
(=) $y = -y + e^{-\frac{1}{2}x^2}$
(=) $y = -y + e^{-\frac{1}{2}x^2}$
(=) $y = -y - e^{-\frac{1}{2}x^2}$

