WISB315 : Functionaalanalyse

Heinz Hanßmann, Stein Meereboer, Mike de Vries




blok 2 tijd plaats
hoorcollege woensdag 15:15 - 17:00
vrijdag 13:15 - 15:00
BBG 023
BBG 223
werkcollege woensdag 13:15 - 15:00
vrijdag 11:00 - 12:45
BBG 023
BBG 023

ECTS : 7.5 studiepunten




We beginnen op woensdag 17 november met twee hoorcolleges, in ruil daarvoor zijn er op vrijdag 24 december twee werkcolleges. Op vrijdag 19 november zijn werk- en hoorcollege in BOL 1.022.




Naast R^n en C^n zijn functieruimten zoals C[0,1] de belangrijkste voorbeelden van vectorruimten. Hierop is nog steeds de theorie uit lineaire algebra van toepassing, maar zodra men naast eindige lineaire combinaties ook oneindige reeksen wil gebruiken komt de analyse om de hoek kijken. Functionaalanalyse is een erg successvol huwelijk van deze twee gebieden, waarmee men tal van wiskundige problemen aankan.

In deze cursus komen de eenvoudigste vragen van deze theorie aan de orde - wat zijn Banachruimten en Hilbertruimten en waarom zijn deze belangrijk? Hoe kan men lineaire afbeeldingen tussen oneindigdimensionale vectorruimten diagonalizeren? We zullen zien dat men met de voor eindigdimensionale vectorruimten opgebouwde intuïtie een heel eind komt en waar geheel nieuwe aspecten belangrijk worden.

Wiskunde leer je het best door het zelf te beoefenen. Daarom raad ik je sterk aan om zelfstandig sommen te maken, bovendien zijn er iedere week drie inleveropgaves. Deze mogen in groepen van twee (of alleen) worden ingeleverd, als een grotere groep per sé samen wil inleveren even langskomen opdat we dit probleem kunnen oplossen. De inleveropgaves worden gecorrigeerd en er wordt een gemiddelde I bepaald (waarin het laagste resultaat niet meetelt). Het eindcijfer is dan C = min(max((I+M)/2, M), M+1), waar M = max(T, H) het resultaat van tentamen en hertentamen. De inleveropgaves kunnen dus alleen maar een positieve invloed hebben.

Tentamen (pdf, ps) en hertentamen gaan allebei over de inhoud van de hele cursus. Hierbij mogen boeken, cursusmateriaal en aantekeningen gebruikt worden, rekenmachines mogen niet gebruikt worden.

Deelresultaten uit de cursus van vorig jaar (ingeleverde opgaven e.d.) zijn dit jaar niet meer geldig.




Literatuur


Eigenlijk voldoet elk willekeurig boek over functionaalanalyse, wij zullen ons toch voornamelijk met die gedeelten bezig houden die in elk boek te vinden zijn. Het lijkt me dan ook voor ieder student(e) belangrijker om hetgene boek te kiezen dat persoonlijk het meeste aanspreekt. Als wiskundige moet je i.h.b. in staat zijn om juist voor een nog onbekend gebied een geschikte literatuurkeuze te kunnen maken. Om je niet meteen het diepe in te gooien staat hieronder alvast een voorafselectie van mogelijke boeken, zie hier (.pdf, .ps) voor enkele meningen van studenten die de cursus al gevolgd hebben. Wie er na de boeken zelf bekeken te hebben nog steeds niet uitkomt kan rustig langskomen voor toegesneden advies!

In het cursusboek (eerste plaats beneden, daarin ook de opgaves) is bovendien per hoofdstuk aangegeven waar de behandelde onderwerpen in (de andere) onderstaande boeken terug te vinden zijn.


Heinz Hanßmann
Functionaalanalyse
Epsilon, Utrecht, 2015.

Karen Saxe
Beginning Functional Analysis
Springer, New York, 2002.

Bryan P. Rynne and Martin A. Youngson
Linear Functional Analysis
Springer, London, 2000/2008.

Jean Dieudonné
Foundations of Modern Analysis
Academic Press, New York, 1960/69.

Nicholas Young
An Introduction to Hilbert space
Cambridge University Text, Cambridge, 1988/89.

Eberhard Zeidler
Applied Functional Analysis
Springer, New York, 1995.

Gerald Teschl
Topics in Real and Functional Analysis
op de website van de auteur verkrijgbaar.




Rooster

17.11. Inleiding. Norm en Banachruimte, inproduct en Hilbertruimte. Topologie van metrische ruimten. Banachruimten en operatoren. Deel- en quotientruimte, (lineaire) operatoren.

19.11. Werkcollegeopgaves 1.20, 1.21, 2.9, 2.10, 3.1, 3.11, inleveropgaves 1.1, 1.18, A.19. Begrensde operatoren, (topologische directe som t/m homomorfiestelling zelf lezen), duale ruimte, de stelling van Hahn-Banach, completering. Voor een bewijs van de stelling van Hahn-Banach zie ook de extra voordracht (pdf, ps) van twee jaar geleden.

24.11. Werkcollegeopgaves 3.2, 3.9, 3.10, 3.16, 3.22, 3.29. Meetkunde van Hilbertruimten. Beste benadering binnen gesloten deelruimten van Hilbertruimten, orthogonale supplementen van gesloten deelruimten, duale ruimte van een Hilbertruimte, orthonormaalsystemen.

26.11. Werkcollegeopgaves 4.2, 4.7, 4.1, 3.25, 4.24, 4.11, inleveropgaves 3.18, 4.8, 4.13. Complete orthonormaalsystemen, Fouriertheorie in L^2[0,1], unitaire operatoren. Compacte verzamelingen. Normequivalentie in eindige dimensie, alleen eindigdimensionale Banachruimten zijn lokaal compact.

1.12. Werkcollegeopgaves 4.19, 4.28, 4.30, 4.16, 4.40, 4.41. Stellingen van Arzelà-Ascoli en Stone-Weierstraß, separabele en niet separabele ruimten.

3.12. Werkcollegeopgaves 5.5, 5.8, 5.9, 5.23, 5.18, inleveropgaves 4.26, 5.14, 4.20 (herstel fout door in deze opgave met N = {0, 1, 2, ...} te werken, anders mist e_1). Begrensde operatoren. L(E) is Banachalgebra, voorbeelden, open mapping theorem, spectrum.

8.12. Werkcollegeopgaves 6.4, 6.5, 6.18, 6.19, 6.22. Divisie-algebra's. Compacte operatoren. Definitie en eigenschappen, Riesz theorie.

10.12. Werkcollegeopgaves 6.12, 7.2, 6.23, 7.8, 7.5, inleveropgaves 6.14, 7.9, 5.17. Bewijs lemma 7.8, approximatie door operatoren van eindige rang, uniform boundedness theorem.

15.12. Werkcollegeopgaves 7.12, 7.3, 7.26, 6.13, 7.7. Zelfgeadjungeerde operatoren. Orthogonale invariante deelruimten, inverteerbarheid zelfgeadjungeerde operatoren, eigenschappen spectrum, spectraalstelling voor zelfgeadjungeerde compacte operatoren.

17.12. Werkcollegeopgaves 8.11, 8.6, 8.12, 8.16, 8.22, inleveropgaves 6.28, 7.19, 7.17. Integraalvergelijkingen. Fredholmalternatief, spectraalstelling, Schrödingervergelijking, vermenigvuldigingsoperator, Laplaceoperator.

22.12. Werkcollegeopgaves 9.4, 8.7, 9.2, 8.21. Greense functie, Sturm-Liouville theorie. Operatoren in Hilbertruimten. Existentie en voorbeelden geadjungeerde operator, partiële isometrie.

24.12. Werkcollegeopgaves 8.15, 9.6, 10.1, 9.11, inleveropgaves 8.19, 8.23, 9.16. Opgaves die zijn blijven liggen en als er nog tijd is opgaves 8.20, 6.15, 4.31, zoek er zelf een uit.

12.1. Werkcollegeopgaves 9.9, 10.3, 9.8, 9.14. L(H) is C*-algebra, normale elementen/operatoren, spectraalstelling voor compacte normale operatoren in Hilbertruimten, functionaalrekening.

14.1. Werkcollegeopgaves 10.5, 10.9, 10.10, 10.6, inleveropgaves 10.4, 10.7, 10.8. Polaire decompositie, Hilbert-Schmidt operatoren. Fredholm-operatoren.

19.1. Werkcollegeopgaves 10.38, 10.14, 10.37, 10.26. Geadjungeerde en compositie van Fredholm-operatoren, Calkinalgebra, parametrix, continuïteit van de index.

21.1. Werkcollegeopgaves 11.2, 11.3, 11.4, 11.7. Fredholmoperatoren met vaste index vormen een boogsamenhangende verzameling. Spectraalwaarden. Puntspectrum, continu spectrum, restspectrum, approximate point spectrum.

26.1. Werkcollegeopgaves 11.8, 12.2, 12.9, 11.22. Essentieel spectrum, rand van het spectrum, geïsoleerde eigenwaarden, niet-essentiële randpunten van het spectrum.