Halloun, I.

Schematic Modeling for Meaningful Learning of Physics

Tijdschrift/boek

Journal of Research in Science Teaching, vol. 33, nr. 9, pp 1019-1041, 1996.

Abstract

Models comprise the core of scientific knowledge. We build mental models that represent aspects of our world, and manipulate elements of these models when we think, plan and try to explain. Our view of the world is dependend of the world and of our ability to construct models of it. Galileo is an example for a modern epistemology of science wereby real world systems are studied through models. He showed us how to build reduced/idealized models, how to conduct thought experiments and how to infer descriptions, explanations and predictions.

According to schematic modeling models are major components of any person's knowledge, and modeling is a major cognitive process for constructing and employing knowledge in the real world. Schematic modeling is presented as an epistemological framework for physics instruction.

To understand a scientific model you need to know it's: domain, composition, structure and organization. Students work on paradigm problems for learning modeling. This modeling goes in five stages: selection, construction, validation, analysis and deployment. Two groups of high school students participated in problem solving tutorials that followed the schematic modeling approach. Both groups improved significantly in problem solving performance, and course achievement was significantly better than control peers.

Annotatie

Het lijkt een top-down benadering van modeling. Weinig over rol van zich ontwikkelende modellen in het onderwijs. Vooral nadruk op het expliciet maken voor leerlingen hoe en waarom ze met modelleren bezig zijn. Ik heb allemaal lesmateriaal gekopieerd van internet betreffende kinematica. Dat moet ik eerst maar eens goed bekijken.

Wel weer een bruikbare opmerking over de relatie tussen kennis over model en over dat wat gemodelleerd wordt (vergelijk co-evolve van See Cobb, Paul ).