Topics Geometric Analysis (WISM 560)

  • Exercise numbers refer to the following Exercise collection
  • Here is a version of the lecture notes with corrected typos indicated
  • Here are some new notes on Weyl's law
  • [2]: Introduction to Pseudo Differential Operators

    Back to the home page.
    Geometric Analysis, 2nd semester

    1. Week 07 (Feb 13):
    Motivational overview:
  • Differential operators, distributions, Sobolev space, symbols,
  • pseudo-differential operators, ellipticity, inversion modulo smoothing operator, elliptic regularity, spectrum.

  • 2. Week 08 (Feb 20):
    First hour (BW):
  • Basic facts about pdo’s on open subsets of R^n
  • Def 1.1.6: definition of pdo on a manifold (scalar case)
  • Definition 1.1.10 of full and principal symbol of an operator on R^n
  • The example of the Laplace operator on R^n
  • Exercise 1.1.11, Lemma 1.1.12
  • The interpretation of the principal symbol as a function on the cotangent bundle of U
  • Exercise 1.1.13
  • Definition of principal symbol as a function on the cotangent bundle of a manifold, which is possible in view of 1.1.12.
  • Second hour (IS):
  • The calculation of the principal symbol of the Laplace Beltrami operator on a Riemannian manifold
  • Definition of differential operators between vector bundles, see Def 1.2.2.
  • grad and div as examples of those.
  • Lemma 1.2.7.
  • The symbols of grad and div, and the principal symbol of the Laplace Beltrami operator again.
  • Exercise 1.2.9: Exterior differentiation as an example, and the associated principal symbol.
  • Lemma 1.2.10.
  • To do for all: homework exercise 1 (hand in by Feb 27)

    3. Week 09 (Feb 27 ):
    First hour (KR)
  • 2.1: reminder, locally convex vector spaces; topology definable by seminorms
  • Example 2.1.8:, Example 2.1.9: topological dual with strong topology
  • discussion of inductive limit and mention of Thm 2.1
  • discuss the important examples of E(Omega) and D(Omega)
  • Second hour (GB):
  • definition of D’(Omega), support of distribution, Definition 2.2.4.
  • Skip 2.2, change of coordinates
  • Lemma 2.2.7, Definition 2.2.8, Example 2.2.9, Def. 2.2.10
  • To do for all: homework exercise 2 (hand in by March 13). Please use LaTeX font size 12pt.

    4. Week 10 (March 6):
    First hour (MM):
  • Section 2.3: the global theory
  • to prepare: change of coordinates, 2.2.
  • topology on E(M, E), Exercise 2.3.2, D(M,E), D’(M,E): generalized sections.
  • needs preparation: reminder of densities and their integrals after lemma 1.2.10
  • the subspace $E’(M,E).$
  • invariance of the spaces under isomorphisms.
  • Second hour (LS):
  • Section 4.1: the Schwartz functions, Lemma 4.1.8,
  • Fourier transform, Lemmas 4.1.9, 4.1.10
  • Theorem 4.1.14 and a sketch of the proof.

  • 5. Week 11 (March 13):
    First hour (BK):
  • convolution of Schwartz functions (section 4.2)
  • relation to Fourier transform, Lemma 4.2.2
  • Prop 4.2.5.
  • (from section 4.3: ) definition of tempered distributions, def 4.3.1
  • the embedding E’ < S’ < D’, Exercise 4.3.2, Lemma 4.3.3.
  • Second hour (LZ):
  • definition L_s^2
  • Exercise 4.3.4
  • Proposition 4.3.5: Fourier transform on tempered distributions
  • Lemma 4.3.7, skip Lemma 4.3.8
  • Lemma 4.3.9: characterization of Sobolev space.
  • Definition 4.3.12 generalization of def Sobolev space, Lemma 4.3.14.

  • 6. Week 12 (March 20):
    First hour (PC):
  • Sect. 4.4, (4.4.5)
  • Lemma 4.4.1,
  • Lemma 4.4.2, Corollary 4.4.3
  • Lemma 4.4.4
  • Second hour (DA):
  • Section 4.5, Lemma 4.5.1
  • Lemma 4.5.2
  • Lemma 4.5.3
  • Proposition 4.5.6
  • To do for all: Exercise 4.3.13. Hand in: Monday March 27.

    7. Week 13 (March 27):
    First hour (AW):
  • Par. 5.1 Exercise 5.1.1 and Def 5.1.2 of the symbol space
  • Observation of Exercise 5.1.3 and the subsequent text
  • The invariance result on symbol space (text following exercise 5.1.6),
  • the definition of symbol space on a smooth manifold, and transformation under diffeo’s.
  • Par 5.2, defi of pseudodiff op, Definition 5.2.2
  • Lemma 5.2.3, Def 5.2.4, Lemma 5.2.5, in statement (a) of the latter, the unique $K$ need not be compactly supported (misprint)
  • Exercise 5.2.6, Exercise 5.2.8.
  • Second hour (BW):
  • par 5.3, Localization of pseudo-diff ops; Prop. 5.3.1
  • par 5.2, Def 5.4.1, Lemma 5.4.2, Prop. 5.4.4
  • Thm 5.4.5, Defs 5.4.6, 5.4.7 and Cor 5.4.10.

  • 8.Week 14 (April 3):
    First hour (IS):
  • par 5.5: expansions in sympbol space: Lemmas 5.5.1,2,3.
  • par 2.3: general operators and kernels: Schwartz kernel theorem.
  • Second hour (KR):
  • Schwartz kernel theorerm, continuation
  • par 6.1: the distribution kernel of a pseudo-differential operator
  • Exercise 5.1.6, to be handed in Monday, April 10.

    9. Week 15 (April 10):
    First hour (LZ):
  • the adjoint of a pseudo-differential operator
  • Second hour (MM):
  • the composition of pseudo-differential operators
  • Here is a pdf with a precise description of the material

    x. Week 16 (April 17): No meeting, Easter/Pasen.

    10. Week 17 (April 24):
    First hour (GB):
  • Ch 7, Cor 7.2.3 (page 132)
  • Lemma 7.2.4
  • Prop 7.2.5
  • Thm. &.2.6
  • Def 7.3.1
  • Second hour (BK):
  • Lemma 7.3.3
  • Lemma 7.3.6
  • Lemma 7.3.8
  • Def 7.4.1
  • Lemma 7.4.3

  • 11. Week 18 (May 1):
    Take home exercise 5. Deadline for handing in: Monday, May 8.
    First hour (LS):
  • Thm 7.4.4
  • Lemma 7.5.1
  • Lemma 7.5.2
  • Lemma 7.5.3
  • Second hour (DA):
  • ch 8 up to Def 8.1.1
  • Remark 8.1.2
  • 8.2 up to Def 8.2.1.

  • 12. Week 19 (May 8):
    First hour (BW): The principal symbol for operators between vector bundles
  • text following Def 8.2.1
  • Lemmas 8.2.2, 8.2.3, 8.2.4
  • Lemma 8.2.5: localizing symbol
  • Thm 8.2.6: characterization symbol for ops between vector bundles
  • Corollary 8.3.2: natural introduction of densities

  • Second hour (AW): Symbol of adjoint and composition: vector bundle case
  • Lemma 8.3.3 (symbol of adjoint)
  • Lemma 8.3.4: pseudo locality
  • Lemmas 8.3.5, 8.3.6
  • Theorem 8.3.7: symbol of composition

  • 13. Week 20 (May 15):
    First hour (LZ): Parametrices for elliptic operators
  • Def. 8.4.1, Lemma 8.4.2, Cor. 8.4.3
  • Def 8.4.4, Thm 8.4.5
  • Thm 8.4.6 (proof should be given!)
  • Second hour (KR): Psdo’s and Sobolev space
  • Corollary 8.4.8 (Elliptic regularity theorem, with proof!!)
  • Lemma 9.1.1, Lemma 9.1.4 (proof!)
  • Prop. 9.1.5, Prop. 9.2.1.

  • 14.Week 21 (May 22):
    First hour (GB): Sobolev spaces on a manifold
  • Lemma 9.2.2, Thm 9.2.3
  • Lemmas 9.2.4, 9.2.5, Cor 9.2.6
  • Indicate how the definition of Sobolev space extends to a manifold, by using the ideas of Chapter 3. Lemma 9.2.7.
  • Second hour (MM): Action of Psdo on Sobolev spaces with coefficients in a vector bundle, basics of Fredholm operataors
  • Theorem 9.2.8, Lemma 9.2.9
  • Def 1.4.1 of Fredholm operator between Banach spaces
  • Theorem 1.4.2
  • Def. 1.4.5, Thm 1.4.9, Thm 1.4.10 (most of these results should be well known)
  • section 1.4.4.

  • 15. Week 22(May 29):
    First hour (BK):
  • Section 9.3 entirely
  • Elliptic self-adjoint operators: New notes on Weyl's law, chapter 10, section 10.2 up to (and including) Thm 6.
  • Second hour (LS):
  • Spectral decomposition for a self-adjoint elliptic operator: section 10.2 Lemma 7 - Theorem 9.
  • New notes, section 11: reformulation of Weyl's law. See also Notes Bouclet.

  • xx. Week 23 (June 5): No meeting: Pentecost/Pinksteren

    16. Week 24 (June 12).

    First hour: AW: Hilbert-Schmidt and trace class operators
  • 12.1: Hilbert-Schmidt operators, Lemma 10, def 11, Lemma 13, Cor 14, Lemma 15
  • 12.2: Polar decomposition, Thm 21, just result, proof is in lecture notes; Lemma 24 with proof
  • 12.3: Ops of trace class: Def 25, Lemma 27, Lemma 28, Thm 30, Cor. 31 without continuity statement
  • Second hour: IS: Trace of kernel operators in geometry
  • 12.3: Lemma 33 and defi of norm; Lemma 34, Thm 31 (b) just mention
  • 12.4: Lemma 37; Lemma 39, statement and rough idea of proof
  • Lemma 40 with proof
  • Cor 41, just mention
  • Thm 42 just mention.
  • Thm 43: sketch of proof, at least in the scalar case.

  • 17. Week 25 (June 19), last meeting.

    EvdB: proof of Weyl’s law for the Laplacian on a compact manifold.






    Last change: 16/2-2016